Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Bioinformatics. 2011 Jul 1;27(13):i239-47. doi: 10.1093/bioinformatics/btr237.
Digital reconstruction, or tracing, of 3D neuron structures is critical toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low signal-to-noise ratio (SNR) and fragmented neuron segments. Published work can handle these hard situations only by introducing global prior information, such as where a neurite segment starts and terminates. However, manual incorporation of such global information can be very time consuming. Thus, a completely automatic approach for these hard situations is highly desirable.
We have developed an automatic graph algorithm, called the all-path pruning (APP), to trace the 3D structure of a neuron. To avoid potential mis-tracing of some parts of a neuron, an APP first produces an initial over-reconstruction, by tracing the optimal geodesic shortest path from the seed location to every possible destination voxel/pixel location in the image. Since the initial reconstruction contains all the possible paths and thus could contain redundant structural components (SC), we simplify the entire reconstruction without compromising its connectedness by pruning the redundant structural elements, using a new maximal-covering minimal-redundant (MCMR) subgraph algorithm. We show that MCMR has a linear computational complexity and will converge. We examined the performance of our method using challenging 3D neuronal image datasets of model organisms (e.g. fruit fly).
The software is available upon request. We plan to eventually release the software as a plugin of the V3D-Neuron package at http://penglab.janelia.org/proj/v3d.
对 3D 神经元结构进行数字重建或追踪,对于反向工程大脑的布线和功能至关重要。然而,尽管有许多现有研究,但这项任务仍然具有挑战性,尤其是当 3D 微观图像的信噪比 (SNR) 较低且神经元片段碎片化时。已发表的工作只能通过引入全局先验信息(例如,神经突段的起点和终点)来处理这些困难情况。然而,手动纳入此类全局信息可能非常耗时。因此,非常需要一种针对这些困难情况的完全自动方法。
我们开发了一种自动图算法,称为全路径修剪 (APP),用于追踪神经元的 3D 结构。为了避免神经元某些部分的潜在误追踪,APP 首先通过从种子位置追踪到图像中每个可能的目标体素/像素位置的最佳测地线最短路径,产生初始过度重建。由于初始重建包含所有可能的路径,因此可能包含冗余结构组件 (SC),我们通过使用新的最大覆盖最小冗余 (MCMR) 子图算法修剪冗余结构元素,简化整个重建而不影响其连通性。我们表明 MCMR 具有线性计算复杂度并将收敛。我们使用模型生物(例如果蝇)的具有挑战性的 3D 神经元图像数据集来检查我们方法的性能。
可根据要求提供软件。我们计划最终将该软件作为 http://penglab.janelia.org/proj/v3d 上的 V3D-Neuron 软件包的插件发布。