Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Bioinformatics. 2013 Jun 1;29(11):1448-54. doi: 10.1093/bioinformatics/btt170. Epub 2013 Apr 19.
Tracing of neuron morphology is an essential technique in computational neuroscience. However, despite a number of existing methods, few open-source techniques are completely or sufficiently automated and at the same time are able to generate robust results for real 3D microscopy images.
We developed all-path-pruning 2.0 (APP2) for 3D neuron tracing. The most important idea is to prune an initial reconstruction tree of a neuron's morphology using a long-segment-first hierarchical procedure instead of the original termini-first-search process in APP. To further enhance the robustness of APP2, we compute the distance transform of all image voxels directly for a gray-scale image, without the need to binarize the image before invoking the conventional distance transform. We also design a fast-marching algorithm-based method to compute the initial reconstruction trees without pre-computing a large graph. This method allows us to trace large images. We bench-tested APP2 on ~700 3D microscopic images and found that APP2 can generate more satisfactory results in most cases than several previous methods.
The software has been implemented as an open-source Vaa3D plugin. The source code is available in the Vaa3D code repository http://vaa3d.org.
Supplementary data are available at Bioinformatics online.
神经元形态追踪是计算神经科学中的一项基本技术。然而,尽管存在许多现有方法,但很少有开源技术是完全或充分自动化的,同时能够为真实的 3D 显微镜图像生成稳健的结果。
我们开发了用于 3D 神经元追踪的全路径修剪 2.0(APP2)。最重要的想法是使用长段优先的层次过程而不是 APP 中的原始末端优先搜索过程来修剪神经元形态的初始重建树。为了进一步增强 APP2 的稳健性,我们直接为灰度图像计算所有图像体素的距离变换,而无需在调用传统距离变换之前对图像进行二值化。我们还设计了一种基于快速行进算法的方法来计算初始重建树,而无需预先计算大图。该方法允许我们追踪大图像。我们在大约 700 个 3D 显微镜图像上对 APP2 进行了基准测试,发现 APP2 在大多数情况下可以生成比以前的几种方法更令人满意的结果。
该软件已作为 Vaa3D 的开源插件实现。源代码可在 Vaa3D 代码库 http://vaa3d.org 中获得。
补充数据可在生物信息学在线获得。