Suppr超能文献

PSIP:结果与临床意义概述

PSIP: an overview of the results and clinical implications.

作者信息

Beuscart Régis

机构信息

CHU Lille, UDSL EA2694, Univ Lille Nord de France, F-59000 Lille, France.

出版信息

Stud Health Technol Inform. 2011;166:3-12.

Abstract

Adverse Drug Events (ADEs) are injuries due to medication management rather than the underlying condition of the patient. They endanger the patients and most of them could be avoided and prevented. The detection of ADEs usually relies on spontaneous reporting or medical chart reviews. The first objective of the PSIP Project is to automatically detect cases of ADEs by means of Data Mining, and to provide these cases to healthcare professionals. The second objective is to prevent ADEs by means of contextualised Clinical Decision Support Systems (Cx-CDSS) connected with Computerised Physician Order Entry (CPOE) or Electronic Health Record (EHR) systems. The detection of ADEs has been made possible through a set of rules able to identify relevant cases is a set of 92,000 medical cases. The results of this detection are provided through "ADE Scorecards". Contextualized Decision Support Systems have been developed by using the same set of rules and implemented in different software environments. The initial objectives of the PSIP project have been reached. The evaluation of the clinical impact has to be completed.

摘要

药物不良事件(ADEs)是由药物管理导致的伤害,而非患者的基础病情所致。它们危及患者安全,且其中大多数是可以避免和预防的。药物不良事件的检测通常依赖于自发报告或病历审查。PSIP项目的首要目标是通过数据挖掘自动检测药物不良事件病例,并将这些病例提供给医疗保健专业人员。第二个目标是通过与计算机化医师医嘱录入(CPOE)或电子健康记录(EHR)系统相连的情境化临床决策支持系统(Cx-CDSS)来预防药物不良事件。通过一组能够识别相关病例的规则,在92000例医疗病例中实现了药物不良事件的检测。检测结果通过“药物不良事件记分卡”提供。情境化决策支持系统利用同一组规则开发,并在不同软件环境中实施。PSIP项目的初始目标已经实现。临床影响评估有待完成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验