Chazard Emmanuel, Ficheur Grégoire, Merlin Béatrice, Genin Michael, Preda Cristian, Beuscart Régis
Lille university hospital, EA2694, Lille, France.
Stud Health Technol Inform. 2009;148:75-84.
Adverse drug events (ADEs) are a public health issue. The objective of this work is to data-mine electronic health records in order to automatically identify ADEs and generate alert rules to prevent those ADEs. The first step of data-mining is to transform native and complex data into a set of binary variables that can be used as causes and effects. The second step is to identify cause-to-effect relationships using statistical methods. After mining 10,500 hospitalizations from Denmark and France, we automatically obtain 250 rules, 75 have been validated till now. The article details the data aggregation and an example of decision tree that allows finding several rules in the field of vitamin K antagonists.
药物不良事件(ADEs)是一个公共卫生问题。这项工作的目的是对电子健康记录进行数据挖掘,以便自动识别药物不良事件并生成预防这些药物不良事件的警报规则。数据挖掘的第一步是将原始的复杂数据转换为一组可作为因果关系的二元变量。第二步是使用统计方法识别因果关系。在挖掘了来自丹麦和法国的10500例住院病例后,我们自动获得了250条规则,到目前为止已有75条得到验证。本文详细介绍了数据汇总以及决策树的一个示例,该决策树能够在维生素K拮抗剂领域找到若干规则。