Suppr超能文献

药物不良事件记分卡:一种用于在电子健康记录中检测药物不良事件的工具。

The ADE scorecards: a tool for adverse drug event detection in electronic health records.

作者信息

Chazard Emmanuel, Băceanu Adrian, Ferret Laurie, Ficheur Grégoire

机构信息

Department of Medical Information and Archives, CHU Lille; UDSL EA 2694; Univ Lille Nord de France; F-59000 Lille, France.

出版信息

Stud Health Technol Inform. 2011;166:169-79.

Abstract

Although several methods exist for Adverse Drug events (ADE) detection due to past hospitalizations, a tool that could display those ADEs to the physicians does not exist yet. This article presents the ADE Scorecards, a Web tool that enables to screen past hospitalizations extracted from Electronic Health Records (EHR), using a set of ADE detection rules, presently rules discovered by data mining. The tool enables the physicians to (1) get contextualized statistics about the ADEs that happen in their medical department, (2) see the rules that are useful in their department, i.e. the rules that could have enabled to prevent those ADEs and (3) review in detail the ADE cases, through a comprehensive interface displaying the diagnoses, procedures, lab results, administered drugs and anonymized records. The article shows a demonstration of the tool through a use case.

摘要

尽管存在多种用于检测因过去住院导致的药物不良事件(ADE)的方法,但目前还没有一种工具能够向医生展示这些药物不良事件。本文介绍了ADE记分卡,这是一种网络工具,它能够使用一组ADE检测规则(目前是通过数据挖掘发现的规则)来筛选从电子健康记录(EHR)中提取的过去住院信息。该工具使医生能够:(1)获取有关其医疗科室中发生的ADE的情境化统计数据;(2)查看在其科室中有用的规则,即那些本可预防这些ADE的规则;以及(3)通过一个综合界面详细查看ADE病例,该界面会显示诊断、治疗程序、实验室结果、所用药物和匿名记录。本文通过一个用例展示了该工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验