Suppr超能文献

阐明主要分层在配对可用性设计中的作用。

Clarifying the role of principal stratification in the paired availability design.

作者信息

Baker Stuart G, Lindeman Karen S, Kramer Barnett S

机构信息

National Institutes of Health, USA.

出版信息

Int J Biostat. 2011;7(1):25. doi: 10.2202/1557-4679.1338. Epub 2011 May 20.

Abstract

The paired availability design for historical controls postulated four classes corresponding to the treatment (old or new) a participant would receive if arrival occurred during either of two time periods associated with different availabilities of treatment. These classes were later extended to other settings and called principal strata. Judea Pearl asks if principal stratification is a goal or a tool and lists four interpretations of principal stratification. In the case of the paired availability design, principal stratification is a tool that falls squarely into Pearl's interpretation of principal stratification as "an approximation to research questions concerning population averages." We describe the paired availability design and the important role played by principal stratification in estimating the effect of receipt of treatment in a population using data on changes in availability of treatment. We discuss the assumptions and their plausibility. We also introduce the extrapolated estimate to make the generalizability assumption more plausible. By showing why the assumptions are plausible we show why the paired availability design, which includes principal stratification as a key component, is useful for estimating the effect of receipt of treatment in a population. Thus, for our application, we answer Pearl's challenge to clearly demonstrate the value of principal stratification.

摘要

历史对照的配对可及性设计假定了四类情况,这四类情况对应于如果参与者在与治疗的不同可及性相关的两个时间段中的任何一个时间段到达时将接受的治疗(旧治疗或新治疗)。这些类别后来扩展到其他情况,并被称为主要分层。朱迪亚·珀尔提出主要分层是一个目标还是一种工具,并列出了主要分层的四种解释。在配对可及性设计的情况下,主要分层是一种工具,它完全符合珀尔对主要分层的解释,即“对有关总体平均值的研究问题的一种近似”。我们描述了配对可及性设计以及主要分层在利用治疗可及性变化的数据估计总体中接受治疗的效果时所起的重要作用。我们讨论了这些假设及其合理性。我们还引入了外推估计,以使可推广性假设更合理。通过说明这些假设为何合理,我们展示了为何包含主要分层作为关键组成部分的配对可及性设计对于估计总体中接受治疗的效果是有用的。因此,对于我们的应用,我们回应了珀尔的挑战,即清楚地证明主要分层的价值。

相似文献

3
Response to Pearl's comments on principal stratification.对珀尔关于主分层评论的回应。
Int J Biostat. 2011;7(1):24. doi: 10.2202/1557-4679.1330. Epub 2011 May 18.
4
A refreshing account of principal stratification.对主分层的清晰阐述。
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.
5
Principal stratification--a goal or a tool?主分层——是目标还是工具?
Int J Biostat. 2011 Mar 30;7(1):20. doi: 10.2202/1557-4679.1322.
7
Invited commentary on Pearl and principal stratification.关于珀尔和主要分层的特邀评论
Int J Biostat. 2011 Aug 13;7(1):1-15. doi: 10.2202/1557-4679.1359.
8
Clarifying selection bias in cluster randomized trials.阐明整群随机试验中的选择偏倚。
Clin Trials. 2022 Feb;19(1):33-41. doi: 10.1177/17407745211056875. Epub 2021 Dec 11.

本文引用的文献

1
Principal stratification--a goal or a tool?主分层——是目标还是工具?
Int J Biostat. 2011 Mar 30;7(1):20. doi: 10.2202/1557-4679.1322.
3
Adaptive designs for randomized trials in public health.公共卫生随机试验的适应性设计
Annu Rev Public Health. 2009;30:1-25. doi: 10.1146/annurev.publhealth.031308.100223.
4
Rethinking historical controls.重新审视历史对照。
Biostatistics. 2001 Dec;2(4):383-96. doi: 10.1093/biostatistics/2.4.383.
5
Principal stratification in causal inference.因果推断中的主分层
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.
6
The paired availability design for historical controls.用于历史对照的配对可及性设计。
BMC Med Res Methodol. 2001;1:9. doi: 10.1186/1471-2288-1-9. Epub 2001 Sep 26.
8
Adjusting for non-compliance and contamination in randomized clinical trials.在随机临床试验中对不依从性和污染进行调整。
Stat Med. 1997 May 15;16(9):1017-29. doi: 10.1002/(sici)1097-0258(19970515)16:9<1017::aid-sim508>3.0.co;2-v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验