School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia.
Biophys J. 2011 Jun 22;100(12):3025-34. doi: 10.1016/j.bpj.2011.05.028.
ATP-binding cassette transporters use the energy of ATP hydrolysis to transport substrates across cellular membranes. They have two transmembrane domains and two cytosolic nucleotide-binding domains. Biochemical studies have characterized an occluded state of the transporter in which nucleotide is tenaciously bound in one active site, whereas the opposite active site is empty or binds nucleotide loosely. Here, we report molecular-dynamics simulations of the bacterial multidrug ATP-binding cassette transporter Sav1866. In two simulations of the ATP/apo state, the empty site opened substantially by way of rotation of the nucleotide-binding domain (NBD) core subdomain, whereas the ATP-bound site remained occluded and intact. We correlate our findings with elastic network and molecular-dynamics simulation analyses of the Sav1866 NBD monomer, and with existing experimental data, to argue that the observed transition is physiological, and that the final structure observed in the ATP/apo simulations corresponds to the tight/loose state of the NBD dimer characterized experimentally.
ATP 结合盒转运蛋白利用 ATP 水解的能量将底物跨膜运输。它们有两个跨膜结构域和两个胞质核苷酸结合结构域。生化研究已经确定了转运蛋白的一种被封闭的状态,其中核苷酸在一个活性位点上被牢固地结合,而相反的活性位点是空的或松散地结合核苷酸。在这里,我们报告了细菌多药 ATP 结合盒转运蛋白 Sav1866 的分子动力学模拟。在 ATP/apo 状态的两个模拟中,通过核苷酸结合结构域 (NBD) 核心亚结构域的旋转,空的位点大大打开,而 ATP 结合的位点仍然被封闭和完整。我们将我们的发现与 Sav1866 NBD 单体的弹性网络和分子动力学模拟分析以及现有的实验数据相关联,以证明观察到的转变是生理性的,并且在 ATP/apo 模拟中观察到的最终结构对应于实验中表征的 NBD 二聚体的紧密/松散状态。