Suppr超能文献

感知运动控制中的不确定性表示。

Representations of uncertainty in sensorimotor control.

机构信息

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.

出版信息

Curr Opin Neurobiol. 2011 Aug;21(4):629-35. doi: 10.1016/j.conb.2011.05.026.

Abstract

Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.

摘要

不确定性在我们的感觉运动互动中无处不在,它源于感官和运动噪音以及对环境的不确定性等因素。与之前的理论不同,贝叶斯框架在对世界状态进行推理以选择行动时的一个重要特性是,要求以概率分布的形式表示与推理相关的不确定性。在感觉运动控制和学习的背景下,贝叶斯框架表明,为了对环境刺激做出最佳反应,中枢神经系统需要以内部模型的形式构建对感觉运动转换的估计,并表示输入、输出和转换本身中的不确定性结构。在这里,我们回顾了一些贝叶斯推理和学习模型,这些模型成功地证明了感觉运动系统对不同形式的不确定性的敏感性,以及最近旨在描述不同计算水平上不确定性表示的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验