Deneve Sophie
Département d'Etudes Cognitives, Ecole Normale Supérieure, Collège de France, 75005 Paris, France.
Neural Comput. 2008 Jan;20(1):91-117. doi: 10.1162/neco.2008.20.1.91.
We show that the dynamics of spiking neurons can be interpreted as a form of Bayesian inference in time. Neurons that optimally integrate evidence about events in the external world exhibit properties similar to leaky integrate-and-fire neurons with spike-dependent adaptation and maximally respond to fluctuations of their input. Spikes signal the occurrence of new information-what cannot be predicted from the past activity. As a result, firing statistics are close to Poisson, albeit providing a deterministic representation of probabilities.
我们表明,脉冲神经元的动力学可以被解释为一种时间上的贝叶斯推理形式。最佳整合关于外部世界事件证据的神经元表现出与具有脉冲依赖性适应的漏电整合-放电神经元相似的特性,并对其输入的波动做出最大响应。脉冲信号表示新信息的出现——即无法从过去的活动中预测到的信息。因此,放电统计接近于泊松分布,尽管它提供了概率的确定性表示。