Suppr超能文献

人类感觉运动控制中的概率模型。

Probabilistic models in human sensorimotor control.

作者信息

Wolpert Daniel M

机构信息

Computational and Biological Learning Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, Cambridge, UK.

出版信息

Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12.

Abstract

Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and select optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty.

摘要

感觉和运动不确定性构成了人类感觉运动控制的一个基本限制。贝叶斯决策理论(BDT)已成为一个统一框架,用于理解中枢神经系统如何在面对此类不确定性时进行最优估计和控制。BDT有两个组成部分:贝叶斯统计学和决策理论。在此,我们回顾贝叶斯统计学,并展示其如何应用于估计外部世界和我们自身身体的状态。最近的研究结果表明,在学习新任务时,我们能够学习外部世界和我们自身感觉器官的统计特性,以便使用贝叶斯统计学进行估计。我们回顾了一些研究,这些研究表明人类能够整合多种信息源以形成最大似然估计,能够纳入关于外部世界可能状态的先验信念以生成最大后验估计,并且能够使用基于卡尔曼滤波器的过程来估计随时间变化的状态。最后,我们回顾运动控制中的贝叶斯决策理论,以及中枢神经系统如何处理误差以确定损失函数并选择最优动作。我们回顾的研究结果表明,我们基于运动输出上信号相关噪声所导致的动作统计来规划运动。综合这些研究为运动系统在存在不确定性的情况下如何运行提供了一个统计框架。

相似文献

1
Probabilistic models in human sensorimotor control.
Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12.
2
Probabilistic mechanisms in sensorimotor control.
Novartis Found Symp. 2006;270:191-8; discussion 198-202, 232-7.
3
Bayesian decision theory in sensorimotor control.
Trends Cogn Sci. 2006 Jul;10(7):319-26. doi: 10.1016/j.tics.2006.05.003. Epub 2006 Jun 27.
4
Computational principles of sensorimotor control that minimize uncertainty and variability.
J Physiol. 2007 Jan 15;578(Pt 2):387-96. doi: 10.1113/jphysiol.2006.120121. Epub 2006 Sep 28.
5
Decision-theoretic models of visual perception and action.
Vision Res. 2010 Nov 23;50(23):2362-74. doi: 10.1016/j.visres.2010.09.031. Epub 2010 Oct 23.
6
Representations of uncertainty in sensorimotor control.
Curr Opin Neurobiol. 2011 Aug;21(4):629-35. doi: 10.1016/j.conb.2011.05.026.
7
Bayesian decision theory as a model of human visual perception: testing Bayesian transfer.
Vis Neurosci. 2009 Jan-Feb;26(1):147-55. doi: 10.1017/S0952523808080905. Epub 2009 Feb 5.
8
Bayesian integration in sensorimotor learning.
Nature. 2004 Jan 15;427(6971):244-7. doi: 10.1038/nature02169.
9
Computational mechanisms of sensorimotor control.
Neuron. 2011 Nov 3;72(3):425-42. doi: 10.1016/j.neuron.2011.10.006.
10
Bayesian integration in force estimation.
J Neurophysiol. 2004 Nov;92(5):3161-5. doi: 10.1152/jn.00275.2004. Epub 2004 Jun 9.

引用本文的文献

1
Contributions of the thumb and index finger to tip pinch force sense.
Sci Rep. 2025 Jul 3;15(1):23687. doi: 10.1038/s41598-025-08644-5.
2
Is It Me or the Train Moving? Humans Resolve Sensory Conflicts with a Nonlinear Feedback Mechanism in Balance Control.
J Neurosci. 2025 Jul 16;45(29):e2303242025. doi: 10.1523/JNEUROSCI.2303-24.2025.
3
Humans use underestimates of auditory spatial and temporal uncertainty for perceptual inference.
Proc Biol Sci. 2025 Jun;292(2048):20242880. doi: 10.1098/rspb.2024.2880. Epub 2025 Jun 4.
5
A virtual rodent predicts the structure of neural activity across behaviours.
Nature. 2024 Aug;632(8025):594-602. doi: 10.1038/s41586-024-07633-4. Epub 2024 Jun 11.
7
Agrammatic output in non-fluent, including Broca's, aphasia as a rational behavior.
Aphasiology. 2023;37(12):1981-2000. doi: 10.1080/02687038.2022.2143233. Epub 2022 Nov 18.
10
Rational inattention and tonic dopamine.
PLoS Comput Biol. 2021 Mar 24;17(3):e1008659. doi: 10.1371/journal.pcbi.1008659. eCollection 2021 Mar.

本文引用的文献

1
Stochastic order parameter equation of isometric force production revealed by drift-diffusion estimates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051905. doi: 10.1103/PhysRevE.74.051905. Epub 2006 Nov 6.
2
Sensory integration does not lead to sensory calibration.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18781-6. doi: 10.1073/pnas.0607687103. Epub 2006 Nov 27.
3
Combining priors and noisy visual cues in a rapid pointing task.
J Neurosci. 2006 Oct 4;26(40):10154-63. doi: 10.1523/JNEUROSCI.2779-06.2006.
4
Vision as Bayesian inference: analysis by synthesis?
Trends Cogn Sci. 2006 Jul;10(7):301-8. doi: 10.1016/j.tics.2006.05.002. Epub 2006 Jun 19.
5
The main sequence of saccades optimizes speed-accuracy trade-off.
Biol Cybern. 2006 Jul;95(1):21-9. doi: 10.1007/s00422-006-0064-x. Epub 2006 Mar 23.
6
Computer optimization of a minimal biped model discovers walking and running.
Nature. 2006 Jan 5;439(7072):72-5. doi: 10.1038/nature04113. Epub 2005 Sep 11.
7
Optimal control of redundant muscles in step-tracking wrist movements.
J Neurophysiol. 2005 Dec;94(6):4244-55. doi: 10.1152/jn.00404.2005. Epub 2005 Aug 3.
9
Flexible strategies for sensory integration during motor planning.
Nat Neurosci. 2005 Apr;8(4):490-7. doi: 10.1038/nn1427. Epub 2005 Mar 27.
10
Testing Bayesian models of human coincidence timing.
J Neurophysiol. 2005 Jul;94(1):395-9. doi: 10.1152/jn.01168.2004. Epub 2005 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验