Wolpert Daniel M
Computational and Biological Learning Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, Cambridge, UK.
Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12.
Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and select optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty.
感觉和运动不确定性构成了人类感觉运动控制的一个基本限制。贝叶斯决策理论(BDT)已成为一个统一框架,用于理解中枢神经系统如何在面对此类不确定性时进行最优估计和控制。BDT有两个组成部分:贝叶斯统计学和决策理论。在此,我们回顾贝叶斯统计学,并展示其如何应用于估计外部世界和我们自身身体的状态。最近的研究结果表明,在学习新任务时,我们能够学习外部世界和我们自身感觉器官的统计特性,以便使用贝叶斯统计学进行估计。我们回顾了一些研究,这些研究表明人类能够整合多种信息源以形成最大似然估计,能够纳入关于外部世界可能状态的先验信念以生成最大后验估计,并且能够使用基于卡尔曼滤波器的过程来估计随时间变化的状态。最后,我们回顾运动控制中的贝叶斯决策理论,以及中枢神经系统如何处理误差以确定损失函数并选择最优动作。我们回顾的研究结果表明,我们基于运动输出上信号相关噪声所导致的动作统计来规划运动。综合这些研究为运动系统在存在不确定性的情况下如何运行提供了一个统计框架。