Suppr超能文献

水合力在胶原蛋白和淀粉样纤维的自组装中的作用。

Role of hydration force in the self-assembly of collagens and amyloid steric zipper filaments.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.

出版信息

J Am Chem Soc. 2011 Aug 3;133(30):11766-73. doi: 10.1021/ja204377y. Epub 2011 Jul 7.

Abstract

In protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces. Using molecular dynamics simulations, we calculate and compare local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two filaments approach, whereas local water diffusion, orientation, or hydrogen-bonding events have no direct effect. Hydration forces between hydrated, polar, and nonpolar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces, ranging in character from "hydrophobic" to "hydrophilic", have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study.

摘要

在蛋白质自组装中,表面类型决定了它们之间的相互作用力。然而,周围水对这种力的贡献程度仍然是一个基本问题。在这里,我们研究了三种自组装的纤维系统,它们分别具有水合(胶原)、干燥非极性和干燥极性(淀粉样蛋白)界面。使用分子动力学模拟,我们计算并比较了局部水合映射和水合力。我们发现,无论底层氨基酸的类型如何,主要的水合壳都在整个表面形成。由于两个纤维的接近导致水合壳的聚结和耗尽,弱振荡水合力产生,而局部水的扩散、取向或氢键事件没有直接影响。水合力在水合、极性和非极性界面之间的差异在于振荡的幅度和相位相对于平衡表面分离。因此,这些蛋白质表面之间的水介导相互作用,从“疏水”到“亲水”,具有基于稳健形成的水合壳的共同分子起源,这可能适用于广泛的生物分子组装,其界面几何形状在长度尺度上与本研究中的相似。

相似文献

10
Hydration of protein-protein interfaces.蛋白质-蛋白质界面的水合作用。
Proteins. 2005 Jul 1;60(1):36-45. doi: 10.1002/prot.20478.

引用本文的文献

1
Water and Collagen: A Mystery Yet to Unfold.水与胶原蛋白:一个有待揭开的谜团。
Biomacromolecules. 2025 May 12;26(5):2784-2799. doi: 10.1021/acs.biomac.4c01735. Epub 2025 Apr 10.
2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
6
Analysis of the Co-Assembly of Type-I and Type-III Collagen.I型和III型胶原蛋白共组装分析
Cell Mol Bioeng. 2016 Aug 31;10(1):41-53. doi: 10.1007/s12195-016-0466-3. eCollection 2017 Feb.

本文引用的文献

4
How Can Hydrophobic Association Be Enthalpy Driven?疏水缔合如何由焓驱动?
J Chem Theory Comput. 2010 Sep 14;6(9):2866-2871. doi: 10.1021/ct1003077. Epub 2010 Aug 24.
5
Water in cavity-ligand recognition.空腔-配体识别中的水
J Am Chem Soc. 2010 Sep 1;132(34):12091-7. doi: 10.1021/ja1050082.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验