Suppr超能文献

芳香酶抑制剂和抗癫痫药物:计算系统生物学分析。

Aromatase inhibitors and antiepileptic drugs: a computational systems biology analysis.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Reprod Biol Endocrinol. 2011 Jun 21;9:92. doi: 10.1186/1477-7827-9-92.

Abstract

BACKGROUND

The present study compares antiepileptic drugs and aromatase (CYP19) inhibitors for chemical and structural similarity. Human aromatase is well known as an important pharmacological target in anti-breast cancer therapy, but recent research demonstrates its role in epileptic seizures, as well. The current antiepileptic treatment methods cause severe side effects that endanger patient health and often preclude continued use. As a result, less toxic and more tolerable antiepileptic drugs (AEDs) are needed, especially since every individual responds differently to given treatment options.

METHODS

Through a pharmacophore search, this study shows that a model previously designed to search for new classes of aromatase inhibitors is able to identify antiepileptic drugs from the set of drugs approved by the Food and Drug Administration. Chemical and structural similarity analyses were performed using five potent AIs, and these studies returned a set of AEDs that the model identifies as hits.

RESULTS

The pharmacophore model returned 73% (19 out of 26) of the drugs used specifically to treat epilepsy and approximately 82% (51 out of 62) of the compounds with anticonvulsant properties. Therefore, this study supports the possibility of identifying AEDs with a pharmacophore model that had originally been designed to identify new classes of aromatase inhibitors. Potential candidates for anticonvulsant therapy identified in this manner are also reported. Additionally, the chemical and structural similarity between antiepileptic compounds and aromatase inhibitors is proved using similarity analyses.

CONCLUSIONS

This study demonstrates that a pharmacophore search using a model based on aromatase inhibition and the enzyme's structural features can be used to screen for new candidates for antiepileptic therapy. In fact, potent aromatase inhibitors and current antiepileptic compounds display significant - over 70% - chemical and structural similarity, and the similarity analyses performed propose a number of antiepileptic compounds with high potential for aromatase inhibition.

摘要

背景

本研究比较了抗癫痫药物和芳香酶(CYP19)抑制剂的化学和结构相似性。人芳香酶是抗乳腺癌治疗中一种重要的药理学靶点,这已广为人知,但最近的研究表明其在癫痫发作中也有作用。目前的抗癫痫治疗方法会导致严重的副作用,危害患者健康,而且往往会阻止继续使用。因此,需要毒性更小、更耐受的抗癫痫药物(AEDs),特别是因为每个个体对特定的治疗方案反应不同。

方法

通过药效团搜索,本研究表明,之前设计用于搜索新型芳香酶抑制剂的模型能够从食品和药物管理局批准的药物中识别出抗癫痫药物。使用五种有效的 AI 进行化学和结构相似性分析,这些研究返回了一组模型识别为命中的 AED。

结果

药效团模型返回了专门用于治疗癫痫的药物中的 73%(19 种中的 19 种),以及具有抗惊厥特性的化合物中的约 82%(62 种中的 51 种)。因此,本研究支持使用最初设计用于识别新型芳香酶抑制剂的药效团模型来识别 AED 的可能性。以这种方式识别的潜在抗惊厥治疗候选药物也有报道。此外,使用相似性分析证明了抗癫痫化合物和芳香酶抑制剂之间的化学和结构相似性。

结论

本研究表明,使用基于芳香酶抑制和酶的结构特征的模型进行药效团搜索可以用于筛选新的抗癫痫治疗候选药物。事实上,强效芳香酶抑制剂和当前的抗癫痫化合物显示出显著的 - 超过 70% - 化学和结构相似性,并且进行的相似性分析提出了一些具有高芳香酶抑制潜力的抗癫痫化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9788/3129585/c4a4c5504117/1477-7827-9-92-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验