Suppr超能文献

如何产生条纹:在果蝇分节中从非周期性到周期性模式的转变的解析。

How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation.

机构信息

Laboratory of Developmental Neurogenetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

出版信息

Development. 2011 Jul;138(14):3067-78. doi: 10.1242/dev.062141.

Abstract

The generation of metameric body plans is a key process in development. In Drosophila segmentation, periodicity is established rapidly through the complex transcriptional regulation of the pair-rule genes. The 'primary' pair-rule genes generate their 7-stripe expression through stripe-specific cis-regulatory elements controlled by the preceding non-periodic maternal and gap gene patterns, whereas 'secondary' pair-rule genes are thought to rely on 7-stripe elements that read off the already periodic primary pair-rule patterns. Using a combination of computational and experimental approaches, we have conducted a comprehensive systems-level examination of the regulatory architecture underlying pair-rule stripe formation. We find that runt (run), fushi tarazu (ftz) and odd skipped (odd) establish most of their pattern through stripe-specific elements, arguing for a reclassification of ftz and odd as primary pair-rule genes. In the case of run, we observe long-range cis-regulation across multiple intervening genes. The 7-stripe elements of run, ftz and odd are active concurrently with the stripe-specific elements, indicating that maternal/gap-mediated control and pair-rule gene cross-regulation are closely integrated. Stripe-specific elements fall into three distinct classes based on their principal repressive gap factor input; stripe positions along the gap gradients correlate with the strength of predicted input. The prevalence of cis-elements that generate two stripes and their genomic organization suggest that single-stripe elements arose by splitting and subfunctionalization of ancestral dual-stripe elements. Overall, our study provides a greatly improved understanding of how periodic patterns are established in the Drosophila embryo.

摘要

体型分节的产生是发育过程中的一个关键过程。在果蝇的体节形成过程中,周期性是通过对成对规则基因的复杂转录调控迅速建立起来的。“初级”成对规则基因通过受前导非周期性母源和缺口基因模式控制的条纹特异性顺式调控元件,产生其 7 条纹表达,而“次级”成对规则基因被认为依赖于能够读取已经周期性的初级成对规则模式的 7 条纹元件。我们使用计算和实验相结合的方法,对成对规则条纹形成的调控结构进行了全面的系统水平研究。我们发现 runt(run)、fushi tarazu(ftz)和 odd skipped(odd)通过条纹特异性元件建立了它们的大部分模式,这表明 ftz 和 odd 被重新归类为初级成对规则基因。就 run 而言,我们观察到跨越多个中间基因的长距离顺式调控。run、ftz 和 odd 的 7 条纹元件与条纹特异性元件同时活跃,表明母源/缺口介导的控制和成对规则基因的交叉调控紧密结合。条纹特异性元件根据其主要的抑制性缺口因子输入分为三类;沿缺口梯度的条纹位置与预测输入的强度相关。生成两个条纹的顺式元件的普遍性及其基因组组织表明,单条纹元件是通过祖先双条纹元件的分裂和亚功能化产生的。总的来说,我们的研究极大地提高了我们对果蝇胚胎中周期性模式是如何建立的理解。

相似文献

2
Huckebein is part of a combinatorial repression code in the anterior blastoderm.
Dev Biol. 2012 Jan 1;361(1):177-85. doi: 10.1016/j.ydbio.2011.10.016. Epub 2011 Oct 15.
3
Different modes of enhancer-specific regulation by Runt and Even-skipped during segmentation.
Mol Biol Cell. 2017 Mar 1;28(5):681-691. doi: 10.1091/mbc.E16-09-0630. Epub 2017 Jan 11.
4
Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription.
Development. 2004 May;131(10):2281-90. doi: 10.1242/dev.01109. Epub 2004 Apr 21.
5
Non-periodic cues generate seven ftz stripes in the Drosophila embryo.
Mech Dev. 1995 Apr;50(2-3):163-75. doi: 10.1016/0925-4773(94)00333-i.
6
Pair rule gene orthologs in spider segmentation.
Evol Dev. 2005 Nov-Dec;7(6):618-28. doi: 10.1111/j.1525-142X.2005.05065.x.
7
Disperse versus compact elements for the regulation of runt stripes in Drosophila.
Dev Biol. 1996 Jul 10;177(1):73-84. doi: 10.1006/dbio.1996.0146.
8
The ftz upstream element drives late ftz stripes but is not required for regulation of Ftz target genes.
Dev Biol. 2024 Jan;505:141-147. doi: 10.1016/j.ydbio.2023.11.004. Epub 2023 Nov 15.
9
Temporal dynamics of pair-rule stripes in living embryos.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8376-8381. doi: 10.1073/pnas.1810430115. Epub 2018 Jul 30.
10
A screen for genes that interact with the Drosophila pair-rule segmentation gene fushi tarazu.
Genetics. 2004 Sep;168(1):161-80. doi: 10.1534/genetics.104.027250.

引用本文的文献

2
Genome-wide quantitative dissection of an arthropod segmented body plan at single-cell resolution.
Commun Biol. 2025 Jun 11;8(1):913. doi: 10.1038/s42003-025-08335-x.
3
From genes to patterns: a framework for modeling the emergence of embryonic development from transcriptional regulation.
Front Cell Dev Biol. 2025 Mar 20;13:1522725. doi: 10.3389/fcell.2025.1522725. eCollection 2025.
4
Optogenetic dissection of transcriptional repression in a multicellular organism.
Nat Commun. 2024 Oct 26;15(1):9263. doi: 10.1038/s41467-024-53539-0.
6
Multifaceted effects on even-skipped transcriptional dynamics upon Krüppel dosage changes.
Development. 2024 Mar 1;151(5). doi: 10.1242/dev.202132. Epub 2024 Mar 4.
7
The ftz upstream element drives late ftz stripes but is not required for regulation of Ftz target genes.
Dev Biol. 2024 Jan;505:141-147. doi: 10.1016/j.ydbio.2023.11.004. Epub 2023 Nov 15.
8
Functional analysis of the Drosophila eve locus in response to non-canonical combinations of gap gene expression levels.
Dev Cell. 2023 Dec 4;58(23):2789-2801.e5. doi: 10.1016/j.devcel.2023.10.001. Epub 2023 Oct 26.
9
Global repression by tailless during segmentation.
Dev Biol. 2024 Jan;505:11-23. doi: 10.1016/j.ydbio.2023.09.014. Epub 2023 Oct 24.

本文引用的文献

1
The developmental transcriptome of Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.
2
Genomic views of distant-acting enhancers.
Nature. 2009 Sep 10;461(7261):199-205. doi: 10.1038/nature08451.
3
Stripy Ftz target genes are coordinately regulated by Ftz-F1.
Dev Biol. 2009 Nov 15;335(2):442-53. doi: 10.1016/j.ydbio.2009.08.004. Epub 2009 Aug 11.
4
Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods.
BMC Genomics. 2008 Nov 25;9:558. doi: 10.1186/1471-2164-9-558.
5
Heads and tails: evolution of antero-posterior patterning in insects.
Biochim Biophys Acta. 2009 Apr;1789(4):333-42. doi: 10.1016/j.bbagrm.2008.09.007. Epub 2008 Oct 11.
6
Shadow enhancers as a source of evolutionary novelty.
Science. 2008 Sep 5;321(5894):1314. doi: 10.1126/science.1160631.
7
Conserved cluster organization of insect Runx genes.
Dev Genes Evol. 2008 Oct;218(10):567-74. doi: 10.1007/s00427-008-0244-x. Epub 2008 Aug 29.
8
Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution.
Cell. 2008 Jul 11;134(1):25-36. doi: 10.1016/j.cell.2008.06.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验