Suppr超能文献

Rab9 依赖性内体分拣及内吞体顺行转运作用下的内切酶 furin。

Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin.

机构信息

The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.

出版信息

J Cell Sci. 2011 Jul 15;124(Pt 14):2401-13. doi: 10.1242/jcs.083782. Epub 2011 Jun 21.

Abstract

The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.

摘要

内肽酶 furin 和跨高尔基网络蛋白 TGN38 是在 TGN 和质膜之间循环的膜蛋白。TGN38 通过依赖 retromer 的途径从早期内体运输到 TGN,而 furin 的细胞内运输则定义不明确。在这里,我们确定了 furin 的行程和运输要求。通过内化测定,我们表明 furin 在前往 TGN 的途中穿过早期和晚期内体。GTPase Rab9 和 TGN 高尔基体 GCC185 是晚期内体到 TGN 途径的组成部分,对于 furin 的有效 TGN 回收是必需的。相比之下,TGN38 的运输不依赖于 Rab9 和 GCC185。为了确定早期内体到 TGN 途径的分拣信号,研究了 furin-TGN38 嵌合体的运输。将 furin 从 Rab9 依赖性晚期内体到 TGN 途径转向依赖 retromer 的早期内体到 TGN 途径需要 TGN38 的跨膜域和细胞质尾巴。我们提出的证据表明,跨膜域的长度是内体分拣的一个因素。总体而言,这些数据表明 furin 使用 Rab9 依赖性途径从晚期内体,并且来自早期内体的逆行运输直接依赖于跨膜域和细胞质尾巴。

相似文献

1
Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin.
J Cell Sci. 2011 Jul 15;124(Pt 14):2401-13. doi: 10.1242/jcs.083782. Epub 2011 Jun 21.
2
Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin.
Eur J Cell Biol. 2010 May;89(5):379-93. doi: 10.1016/j.ejcb.2009.10.021. Epub 2010 Feb 6.
3
The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network.
Mol Biol Cell. 2007 Dec;18(12):4979-91. doi: 10.1091/mbc.e07-06-0622. Epub 2007 Oct 3.
4
Endosome to Golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases.
Mol Biol Cell. 2001 Jul;12(7):2099-107. doi: 10.1091/mbc.12.7.2099.
6
FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.
Mol Biol Cell. 2010 Sep 1;21(17):3041-53. doi: 10.1091/mbc.E10-04-0313. Epub 2010 Jul 7.
7
Role of cytoplasmic domain serines in intracellular trafficking of furin.
Mol Biol Cell. 2004 Jun;15(6):2884-94. doi: 10.1091/mbc.e03-09-0653. Epub 2004 Apr 9.
8
The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure.
Traffic. 2007 Jun;8(6):758-73. doi: 10.1111/j.1600-0854.2007.00563.x. Epub 2007 May 4.
9
Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-Golgi network traffic of furin.
J Biol Chem. 2009 Feb 6;284(6):3750-61. doi: 10.1074/jbc.M806539200. Epub 2008 Dec 4.

引用本文的文献

2
Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry.
Front Virol. 2022;2. doi: 10.3389/fviro.2022.923018. Epub 2022 Jun 29.
5
Quantitative Chemical Imaging of Organelles.
Acc Chem Res. 2024 Jul 16;57(14):1906-1917. doi: 10.1021/acs.accounts.4c00191. Epub 2024 Jun 25.
6
Protein sorting from endosomes to the TGN.
Front Cell Dev Biol. 2023 Feb 21;11:1140605. doi: 10.3389/fcell.2023.1140605. eCollection 2023.
7
Retrograde transport of CDMPR depends on several machineries as analyzed by sulfatable nanobodies.
Life Sci Alliance. 2022 Mar 21;5(7). doi: 10.26508/lsa.202101269. Print 2022 Mar.
9
Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly.
Sci Adv. 2021 Mar 24;7(13). doi: 10.1126/sciadv.abf8598. Print 2021 Mar.
10
Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins.
Toxins (Basel). 2020 Jan 1;12(1):26. doi: 10.3390/toxins12010026.

本文引用的文献

1
Endosome-to-Golgi transport pathways in physiological processes.
Histol Histopathol. 2011 Mar;26(3):395-408. doi: 10.14670/HH-26.395.
2
A comprehensive comparison of transmembrane domains reveals organelle-specific properties.
Cell. 2010 Jul 9;142(1):158-69. doi: 10.1016/j.cell.2010.05.037.
3
TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways.
Trends Cell Biol. 2010 Jun;20(6):329-36. doi: 10.1016/j.tcb.2010.02.006. Epub 2010 Mar 12.
4
Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin.
Eur J Cell Biol. 2010 May;89(5):379-93. doi: 10.1016/j.ejcb.2009.10.021. Epub 2010 Feb 6.
5
Automated organelle-based colocalization in whole-cell imaging.
Cytometry A. 2009 Nov;75(11):941-50. doi: 10.1002/cyto.a.20786.
6
Pathways and mechanisms of endocytic recycling.
Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608. doi: 10.1038/nrm2755.
7
Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function.
Nat Rev Mol Cell Biol. 2009 Sep;10(9):623-35. doi: 10.1038/nrm2745. Epub 2009 Aug 12.
9
Tracing the retrograde route in protein trafficking.
Cell. 2008 Dec 26;135(7):1175-87. doi: 10.1016/j.cell.2008.12.009.
10
Sorting of lysosomal proteins.
Biochim Biophys Acta. 2009 Apr;1793(4):605-14. doi: 10.1016/j.bbamcr.2008.10.016. Epub 2008 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验