Suppr超能文献

神经整合的区间定时模型。

A model of interval timing by neural integration.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

J Neurosci. 2011 Jun 22;31(25):9238-53. doi: 10.1523/JNEUROSCI.3121-10.2011.

Abstract

We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

摘要

我们证明,关于神经处理的简单假设可以得出一种区间定时模型,即作为一个时间整合过程,在一个区间的过程中,时间的噪声发放率表示平均线性上升,达到响应阈值。我们的假设包括:神经尖峰序列近似于独立的泊松过程,它们之间的相关性可以通过平衡兴奋和抑制来大部分消除,神经群体可以作为积分器,定时行为的目标是最大的准确性和最小的方差。该模型解释了啮齿动物、猴子和人类的各种生理和行为发现,包括在奖励预测线索出现和延迟奖励之间的发放率增加,以及在区间定时任务中普遍的标度不变的反应时间分布。此外,它对这些分布的偏度做出了具体的、有充分依据的预测,这是定时数据的一个通常被忽略的特征。该模型还包含一个快速(可能是一次性)的持续时间学习过程。人类行为数据支持学习规则关于定时反应序列中学习速度的预测。这些结果表明,基于简单的整合模型应该在区间定时理论中发挥与感知决策理论同样重要的作用,并且可能存在一种共同的神经机制来支持这两种类型的行为。

相似文献

1
A model of interval timing by neural integration.神经整合的区间定时模型。
J Neurosci. 2011 Jun 22;31(25):9238-53. doi: 10.1523/JNEUROSCI.3121-10.2011.
2
Superposition of many independent spike trains is generally not a Poisson process.许多独立脉冲序列的叠加通常不是泊松过程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):022901. doi: 10.1103/PhysRevE.73.022901. Epub 2006 Feb 23.
3
Correlated transition between two activity states of neurons.神经元两种活动状态之间的相关转变。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031910. doi: 10.1103/PhysRevE.73.031910. Epub 2006 Mar 14.
5
Stabilizing synchrony by inhomogeneity.通过不均匀性实现同步稳定
Sci Rep. 2015 Sep 4;5:13854. doi: 10.1038/srep13854.
6
Dynamics of moment neuronal networks.瞬间神经元网络的动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041906. doi: 10.1103/PhysRevE.73.041906. Epub 2006 Apr 7.
8
Role of network dynamics in shaping spike timing reliability.网络动力学在塑造峰电位时间可靠性中的作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041903. doi: 10.1103/PhysRevE.72.041903. Epub 2005 Oct 5.
9
Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.由脉冲时间依赖可塑性驱动的网络演化中的霍普夫分岔
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056103. doi: 10.1103/PhysRevE.86.056103. Epub 2012 Nov 6.

引用本文的文献

1
Awareness of both global uncertainty and feedback in human time estimation.人类时间估计中对全局不确定性和反馈的认知。
Atten Percept Psychophys. 2025 Oct;87(7):2121-2128. doi: 10.3758/s13414-025-03115-5. Epub 2025 Jul 9.
3
Rats and mice rapidly update timed behaviors.大鼠和小鼠能快速更新定时行为。
Anim Cogn. 2025 Jan 24;28(1):6. doi: 10.1007/s10071-025-01930-9.
7
Neural Sequences and the Encoding of Time.神经序列与时间编码。
Adv Exp Med Biol. 2024;1455:81-93. doi: 10.1007/978-3-031-60183-5_5.

本文引用的文献

1
Modelling timing performance on the peak procedure.对高峰程序的计时性能进行建模。
Behav Processes. 1996 Sep;37(2-3):137-56. doi: 10.1016/0376-6357(95)00083-6.
3
Temporal context calibrates interval timing.时间背景校准时间间隔。
Nat Neurosci. 2010 Aug;13(8):1020-6. doi: 10.1038/nn.2590. Epub 2010 Jun 27.
5
The asynchronous state in cortical circuits.皮质电路中的异步状态。
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.
9
Memory without feedback in a neural network.神经网络中无反馈的记忆。
Neuron. 2009 Feb 26;61(4):621-34. doi: 10.1016/j.neuron.2008.12.012.
10
Risk assessment in man and mouse.人和小鼠的风险评估。
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2459-63. doi: 10.1073/pnas.0812709106. Epub 2009 Feb 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验