Suppr超能文献

双选择决策中的奖励率优化:理论预测的实证检验。

Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions.

机构信息

Princeton Neuroscience Institute, Princeton University, USA.

出版信息

J Exp Psychol Hum Percept Perform. 2009 Dec;35(6):1865-97. doi: 10.1037/a0016926.

Abstract

The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.

摘要

漂移-扩散模型(DDM)为静态、二择一强制选择任务实施了最优决策程序。在每个试验上积累信息时应用的决策阈值的高度决定了 DDM 的速度-准确性权衡(SAT),从而解释了人类在快速反应任务中的普遍表现特征。然而,参与者如何确定特定的权衡取舍知之甚少。一种可能性是他们选择 SAT,以使表现获得的主观奖励率最大化。对于 DDM,在奖励正确反应的自由反应任务中,其阈值和起始点参数存在唯一的、奖励率最大化的值(R. Bogacz、E. Brown、J. Moehlis、P. Holmes 和 J. D. Cohen,2006)。这些最优值随反应-刺激间隔、先验刺激概率和正确反应的相对奖励幅度而变化。我们根据这些任务操作检验了关于反应时、准确性和反应偏差的定量预测,发现分组数据与最优参数化 DDM 的预测非常吻合。

相似文献

1
Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions.
J Exp Psychol Hum Percept Perform. 2009 Dec;35(6):1865-97. doi: 10.1037/a0016926.
2
Do humans produce the speed-accuracy trade-off that maximizes reward rate?
Q J Exp Psychol (Hove). 2010 May;63(5):863-91. doi: 10.1080/17470210903091643. Epub 2009 Sep 10.
3
Optimal decision making in neural inhibition models.
Psychol Rev. 2012 Jan;119(1):201-15. doi: 10.1037/a0026275. Epub 2011 Nov 21.
4
Rapid decision threshold modulation by reward rate in a neural network.
Neural Netw. 2006 Oct;19(8):1013-26. doi: 10.1016/j.neunet.2006.05.038. Epub 2006 Sep 20.
5
Acquisition of decision making criteria: reward rate ultimately beats accuracy.
Atten Percept Psychophys. 2011 Feb;73(2):640-57. doi: 10.3758/s13414-010-0049-7.
6
Explicit melioration by a neural diffusion model.
Brain Res. 2009 Nov 24;1299:95-117. doi: 10.1016/j.brainres.2009.07.017. Epub 2009 Jul 30.
7
Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data.
Behav Brain Res. 2015 Sep 15;291:147-154. doi: 10.1016/j.bbr.2015.05.024. Epub 2015 May 22.
8
Drift-Diffusion Model Reveals Impaired Reward-Based Perceptual Decision-Making Processes Associated with Depression in Late Childhood and Early Adolescent Girls.
Res Child Adolesc Psychopathol. 2022 Nov;50(11):1515-1528. doi: 10.1007/s10802-022-00936-y. Epub 2022 Jun 9.
10
Single-trial dynamics explain magnitude sensitive decision making.
BMC Neurosci. 2018 Sep 10;19(1):54. doi: 10.1186/s12868-018-0457-5.

引用本文的文献

1
Time and memory costs jointly determine a speed-accuracy trade-off and set-size effects.
J Exp Psychol Gen. 2025 Jun;154(6):1611-1627. doi: 10.1037/xge0001760. Epub 2025 Apr 7.
3
Mutual inclusivity improves decision-making by smoothing out choice's competitive edge.
Nat Hum Behav. 2025 Mar;9(3):521-533. doi: 10.1038/s41562-024-02064-7. Epub 2024 Dec 20.
4
Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making.
Nat Commun. 2024 Jan 22;15(1):662. doi: 10.1038/s41467-024-44880-5.
5
Neural Representations of Post-Decision Accuracy and Reward Expectation in the Caudate Nucleus and Frontal Eye Field.
J Neurosci. 2024 Jan 10;44(2):e0902232023. doi: 10.1523/JNEUROSCI.0902-23.2023.
6
Modelling decision-making biases.
Front Comput Neurosci. 2023 Oct 20;17:1222924. doi: 10.3389/fncom.2023.1222924. eCollection 2023.
7
Predictions and rewards affect decision-making but not subjective experience.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2220749120. doi: 10.1073/pnas.2220749120. Epub 2023 Oct 25.
8
Contributions of the Basal Ganglia to Visual Perceptual Decisions.
Annu Rev Vis Sci. 2023 Sep 15;9:385-407. doi: 10.1146/annurev-vision-111022-123804.
9
Humans reconfigure target and distractor processing to address distinct task demands.
Psychol Rev. 2024 Mar;131(2):349-372. doi: 10.1037/rev0000442. Epub 2023 Sep 4.
10
Visuo-vestibular heading perception: a model system to study multi-sensory decision making.
Philos Trans R Soc Lond B Biol Sci. 2023 Sep 25;378(1886):20220334. doi: 10.1098/rstb.2022.0334. Epub 2023 Aug 7.

本文引用的文献

1
Robust versus optimal strategies for two-alternative forced choice tasks.
J Math Psychol. 2010 Apr 1;54(2):230-246. doi: 10.1016/j.jmp.2009.12.004. Epub 2010 Jan 13.
2
Do humans produce the speed-accuracy trade-off that maximizes reward rate?
Q J Exp Psychol (Hove). 2010 May;63(5):863-91. doi: 10.1080/17470210903091643. Epub 2009 Sep 10.
3
Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing.
Q J Exp Psychol (Hove). 2009 Feb;62(2):209-18. doi: 10.1080/17470210802240655. Epub 2008 Aug 8.
4
Fitting the Ratcliff diffusion model to experimental data.
Psychon Bull Rev. 2007 Dec;14(6):1011-26. doi: 10.3758/bf03193087.
5
The diffusion decision model: theory and data for two-choice decision tasks.
Neural Comput. 2008 Apr;20(4):873-922. doi: 10.1162/neco.2008.12-06-420.
7
Rapid decision threshold modulation by reward rate in a neural network.
Neural Netw. 2006 Oct;19(8):1013-26. doi: 10.1016/j.neunet.2006.05.038. Epub 2006 Sep 20.
10
Interpreting the parameters of the diffusion model: an empirical validation.
Mem Cognit. 2004 Oct;32(7):1206-20. doi: 10.3758/bf03196893.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验