Princeton Neuroscience Institute, Princeton University, USA.
J Exp Psychol Hum Percept Perform. 2009 Dec;35(6):1865-97. doi: 10.1037/a0016926.
The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.
漂移-扩散模型(DDM)为静态、二择一强制选择任务实施了最优决策程序。在每个试验上积累信息时应用的决策阈值的高度决定了 DDM 的速度-准确性权衡(SAT),从而解释了人类在快速反应任务中的普遍表现特征。然而,参与者如何确定特定的权衡取舍知之甚少。一种可能性是他们选择 SAT,以使表现获得的主观奖励率最大化。对于 DDM,在奖励正确反应的自由反应任务中,其阈值和起始点参数存在唯一的、奖励率最大化的值(R. Bogacz、E. Brown、J. Moehlis、P. Holmes 和 J. D. Cohen,2006)。这些最优值随反应-刺激间隔、先验刺激概率和正确反应的相对奖励幅度而变化。我们根据这些任务操作检验了关于反应时、准确性和反应偏差的定量预测,发现分组数据与最优参数化 DDM 的预测非常吻合。