Suppr超能文献

超低磁场领域的非冷冻解剖成像:手部 MRI 演示。

Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration.

机构信息

Los Alamos National Laboratory, Applied Modern Physics Group, MS D454, Los Alamos, NM 87545, USA.

出版信息

J Magn Reson. 2011 Aug;211(2):101-8. doi: 10.1016/j.jmr.2011.05.011. Epub 2011 Jun 1.

Abstract

Ultra-low field (ULF) MRI with a pulsed prepolarization is a promising method with potential for applications where conventional high-, mid-, and low-field medical MRI cannot be used due to cost, weight, or other restrictions. Previously, successful ULF demonstrations of anatomical imaging were made using liquid helium-cooled SQUIDs and conducted inside a magnetically shielded room. The Larmor frequency for these demonstrations was ∼3 kHz. In order to make ULF MRI more accessible, portable, and inexpensive, we have recently developed a non-cryogenic system. To eliminate the requirement for a magnetically shielded room and improve the detection sensitivity, we increased the frequency to 83.6 kHz. While the background noise at these frequencies is greatly reduced, this is still within the ULF regime and most of its advantages such as simplicity in magnetic field generation hardware, and less stringent requirements for uniform fields, remaining. In this paper we demonstrate use of this system to image a human hand with up to 1.5mm resolution. The signal-to-noise ratio was sufficient to reveal anatomical features within a scan time of less than 7 min. This prototype can be scaled up for constructing head and full body scanners, and work is in progress toward demonstration of head imaging.

摘要

超低场(ULF)MRI 采用脉冲预极化技术,是一种很有前途的方法,在由于成本、重量或其他限制而无法使用传统高、中、低场医学 MRI 的情况下,具有潜在的应用价值。此前,使用液氦冷却的超导量子干涉仪(SQUIDs)在磁屏蔽室内成功展示了 ULF 的解剖成像。这些演示的拉莫尔频率约为 3 kHz。为了使 ULF MRI 更易于使用、便携且价格低廉,我们最近开发了一种非低温系统。为了消除对磁屏蔽室的需求并提高检测灵敏度,我们将频率提高到了 83.6 kHz。虽然这些频率下的背景噪声大大降低,但这仍然在 ULF 范围内,其大部分优势仍然存在,例如磁场生成硬件简单,对均匀场的要求较低。在本文中,我们展示了使用该系统以高达 1.5mm 的分辨率对人手进行成像。在不到 7 分钟的扫描时间内,信噪比足以显示解剖特征。该原型可用于构建头部和全身扫描仪,并且正在进行头部成像的演示工作。

相似文献

2
Anatomical MRI with an atomic magnetometer.基于原子磁力仪的解剖磁共振成像。
J Magn Reson. 2013 Jun;231:39-45. doi: 10.1016/j.jmr.2013.02.020. Epub 2013 Mar 15.
4
Non-cryogenic ultra-low field MRI of wrist-forearm area.腕-前臂区域的非低温超低频 MRI。
J Magn Reson. 2013 Aug;233:103-6. doi: 10.1016/j.jmr.2013.05.012. Epub 2013 Jun 7.
6
SQUID-detected ultra-low field MRI.超导量子干涉仪检测的超低场磁共振成像。
J Magn Reson. 2013 Mar;228:1-15. doi: 10.1016/j.jmr.2012.11.030. Epub 2012 Dec 22.

引用本文的文献

9
Low-Cost High-Performance MRI.低成本高性能磁共振成像
Sci Rep. 2015 Oct 15;5:15177. doi: 10.1038/srep15177.
10
Non-cryogenic ultra-low field MRI of wrist-forearm area.腕-前臂区域的非低温超低频 MRI。
J Magn Reson. 2013 Aug;233:103-6. doi: 10.1016/j.jmr.2013.05.012. Epub 2013 Jun 7.

本文引用的文献

1
MRI: a charmed past and an exciting future.MRI:一个充满魅力的过去和令人兴奋的未来。
J Magn Reson Imaging. 2009 Nov;30(5):919-23. doi: 10.1002/jmri.21962.
3
Microtesla MRI of the human brain combined with MEG.结合脑磁图的人体脑部微特斯拉磁共振成像
J Magn Reson. 2008 Sep;194(1):115-20. doi: 10.1016/j.jmr.2008.06.007. Epub 2008 Jun 21.
4
Parallel MRI at microtesla fields.微特斯拉场下的并行磁共振成像
J Magn Reson. 2008 Jun;192(2):197-208. doi: 10.1016/j.jmr.2008.02.015. Epub 2008 Mar 6.
5
6
Detection of NMR signals with a radio-frequency atomic magnetometer.利用射频原子磁力计检测核磁共振信号。
J Magn Reson. 2007 Apr;185(2):214-20. doi: 10.1016/j.jmr.2006.12.012. Epub 2006 Dec 23.
9
Magnetic resonance imaging with an optical atomic magnetometer.利用光学原子磁力仪的磁共振成像。
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12668-71. doi: 10.1073/pnas.0605396103. Epub 2006 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验