Suppr超能文献

采用高灵敏度传感线圈的高分辨率超低场磁共振成像

High-resolution ultra-low field magnetic resonance imaging with a high-sensitivity sensing coil.

作者信息

Savukov Igor, Kim Young Jin, Newman Shaun

机构信息

MPA-Quantum, Los Alamos National Laboratory, P.O. Box 1663, MS-D454, Los Alamos, New Mexico 87545, USA.

出版信息

J Appl Phys. 2022 Nov 7;132(17):174503. doi: 10.1063/5.0123692. Epub 2022 Nov 2.

Abstract

We present high-resolution magnetic resonance imaging (MRI) at ultra-low field (ULF) with a proton Larmor frequency of around 120 kHz. The key element is a specially designed high-sensitivity sensing coil in the shape of a solenoid with a few millimeter gap between windings to decrease the proximity effect and, hence, increase the coil's quality ( ) factor and sensitivity. External noise is strongly suppressed by enclosing the sensing coil in a copper cylindrical shield, large enough not to negatively affect the coil's factor and sensitivity, measured to be 217 and 0.47 fT/Hz , respectively. To enhance small polarization of proton spins at ULF, a strong pulsed 0.1 T prepolarization field is applied, making the signal-to-noise ratio (SNR) of ULF MRI sufficient for high-quality imaging in a short time. We demonstrate ULF MRI of a copper sulfate solution phantom with a resolution of and SNR of 10. The acquisition time is 6.3 min without averaging. The sensing coil size in the current realization can accommodate imaging objects of 9 cm in size, sufficient for hand, and it can be further increased for human head imaging in the future. Since the in-plane resolution of is typical in anatomical medical imaging, this ULF MRI method can be an alternative low-cost, rapid, portable method for anatomical medical imaging of the human body or animals. This ULF MRI method can supplement other MRI methods, especially when such methods are restricted due to high cost, portability requirement, imaging artifacts, and other factors.

摘要

我们展示了在超低场(ULF)下的高分辨率磁共振成像(MRI),其质子拉莫尔频率约为120kHz。关键元件是一个特殊设计的高灵敏度传感线圈,呈螺线管形状,绕组之间有几毫米的间隙,以减少邻近效应,从而提高线圈的品质( )因数和灵敏度。通过将传感线圈封闭在一个足够大的铜质圆柱形屏蔽中,可有效抑制外部噪声,该屏蔽不会对线圈的因数和灵敏度产生负面影响,测得的因数和灵敏度分别为217和0.47 fT/Hz 。为了增强超低场下质子自旋的小极化,施加了一个强脉冲0.1 T预极化场,使得超低场MRI的信噪比(SNR)足以在短时间内进行高质量成像。我们展示了硫酸铜溶液体模的超低场MRI,分辨率为 ,信噪比为10。采集时间为6.3分钟,无需平均。当前实现中的传感线圈尺寸可容纳9厘米大小的成像对象,足以用于手部成像,未来还可进一步增大以用于人体头部成像。由于 的面内分辨率在解剖医学成像中较为典型,这种超低场MRI方法可以成为一种低成本、快速、便携的人体或动物解剖医学成像替代方法。这种超低场MRI方法可以补充其他MRI方法,特别是当这些方法由于成本高、便携性要求、成像伪影等因素受到限制时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a38c/9633096/f41ece47c29f/JAPIAU-000132-174503_1-g001.jpg

相似文献

1
High-resolution ultra-low field magnetic resonance imaging with a high-sensitivity sensing coil.
J Appl Phys. 2022 Nov 7;132(17):174503. doi: 10.1063/5.0123692. Epub 2022 Nov 2.
2
Magnetic shieldless ultra-low-field MRI with an optically pumped magnetometer.
J Magn Reson. 2022 Oct;343:107280. doi: 10.1016/j.jmr.2022.107280. Epub 2022 Aug 17.
3
Non-cryogenic anatomical imaging in ultra-low field regime: hand MRI demonstration.
J Magn Reson. 2011 Aug;211(2):101-8. doi: 10.1016/j.jmr.2011.05.011. Epub 2011 Jun 1.
4
Super resolution using sparse sampling at portable ultra-low field MR.
Front Neurol. 2024 May 24;15:1330203. doi: 10.3389/fneur.2024.1330203. eCollection 2024.
6
SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.
J Magn Reson. 2012 Nov;224:22-31. doi: 10.1016/j.jmr.2012.08.010. Epub 2012 Aug 24.
7
Anatomical MRI with an atomic magnetometer.
J Magn Reson. 2013 Jun;231:39-45. doi: 10.1016/j.jmr.2013.02.020. Epub 2013 Mar 15.
8
Pushing the limits of low-cost ultra-low-field MRI by dual-acquisition deep learning 3D superresolution.
Magn Reson Med. 2023 Aug;90(2):400-416. doi: 10.1002/mrm.29642. Epub 2023 Apr 3.
9
Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images.
PLoS One. 2018 Mar 6;13(3):e0193890. doi: 10.1371/journal.pone.0193890. eCollection 2018.
10
RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.
IEEE Trans Microw Theory Tech. 2014 Aug;62(8):1784-1789. doi: 10.1109/tmtt.2014.2331621.

引用本文的文献

1
Domino volumetric metamaterial resonator for very-low-field MRI.
Med Phys. 2025 May;52(5):2874-2886. doi: 10.1002/mp.17726. Epub 2025 Feb 28.

本文引用的文献

1
Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer.
J Magn Reson. 2020 Aug;317:106780. doi: 10.1016/j.jmr.2020.106780. Epub 2020 Jul 12.
2
Towards ultimate low frequency air-core magnetometer sensitivity.
Sci Rep. 2017 May 23;7(1):2269. doi: 10.1038/s41598-017-02099-z.
3
A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.
Sensors (Basel). 2016 Oct 13;16(10):1691. doi: 10.3390/s16101691.
4
Low-Cost High-Performance MRI.
Sci Rep. 2015 Oct 15;5:15177. doi: 10.1038/srep15177.
5
Magnetic-resonance imaging of the human brain with an atomic magnetometer.
Appl Phys Lett. 2013 Jul 22;103(4):43703. doi: 10.1063/1.4816433. Epub 2013 Jul 23.
6
Anatomical MRI with an atomic magnetometer.
J Magn Reson. 2013 Jun;231:39-45. doi: 10.1016/j.jmr.2013.02.020. Epub 2013 Mar 15.
7
SQUID-detected ultra-low field MRI.
J Magn Reson. 2013 Apr;229:127-41. doi: 10.1016/j.jmr.2013.02.009. Epub 2013 Feb 15.
8
Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
Magn Reson Med. 2013 Jun;69(6):1795-804. doi: 10.1002/mrm.24413. Epub 2012 Jul 17.
9
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
10
SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison.
IEEE Trans Appl Supercond. 2011;21(3):465-468. doi: 10.1109/TASC.2010.2089402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验