Suppr超能文献

基于 NSOM/QD 的荧光-形貌图像融合技术直接揭示了 T 细胞激活过程中细胞膜波动时 CD69 和 CD71 激活分子的纳米级空间峰谷极性。

NSOM/QD-based fluorescence-topographic image fusion directly reveals nano-spatial peak-valley polarities of CD69 and CD71 activation molecules on cell-membrane fluctuations during T-cell activation.

机构信息

Department of Microbiology & Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, United States.

出版信息

Immunol Lett. 2011 Oct 30;140(1-2):44-51. doi: 10.1016/j.imlet.2011.06.003. Epub 2011 Jun 15.

Abstract

Nano-spatial distribution of cell surface molecules on cell membrane fluctuations during T-cell activation has not been reported. In this study, we innovated application of near-field scanning optical microscopy (NSOM)/quantum dots (QDs)-based nanotechnology through three-dimensional image fusion algorithm to merge the simultaneously obtained dual-color fluorescence information and three-dimensional topography. This novel imaging system made it possible to visualize nano-spatial distribution and organization of early-activation molecules CD69 and late-activation molecules CD71 on cell-membrane fluctuations during T-cell activation. Interestingly, most CD69 molecules were clustered to form 250-500nm nano-domains polarizing predominantly in the peak of the cell-membrane fluctuations. In contrast, although CD71 molecules were also clustered as 250-500nm nano-domains, they polarized dominantly in the valley of the cell-membrane fluctuations. The peak-valley polarities of CD69 nano-domains and CD71 nano-domains implied their different functions. CD69 nano-domains polarizing on membrane-peak fluctuations might serve as transient platforms driving TCR/CD3-induced signaling and activation, whereas CD71 nano-domains distributing in the membrane-valley fluctuations appeared to facilitate iron uptake for increased metabolisms in T-cell activation. Importantly, this NSOM/QD-based fluorescence-topographic image fusion provides a powerful tool to visualize nano-spatial distribution of cell-surface molecules on cell-membrane fluctuations and enable better understanding of distribution-function relationship.

摘要

细胞膜波动中 T 细胞活化过程中细胞表面分子的纳米级空间分布尚未见报道。在这项研究中,我们创新性地应用基于近场扫描光学显微镜(NSOM)/量子点(QD)的纳米技术,通过三维图像融合算法,融合同时获得的双荧光信息和三维形貌。这种新型成像系统使可视化 T 细胞活化过程中细胞膜波动时早期活化分子 CD69 和晚期活化分子 CD71 的纳米级空间分布和组织成为可能。有趣的是,大多数 CD69 分子聚集形成 250-500nm 的纳米域,主要在细胞膜波动的峰值处极化。相比之下,虽然 CD71 分子也聚集形成 250-500nm 的纳米域,但它们主要在细胞膜波动的谷处极化。CD69 纳米域和 CD71 纳米域的峰谷极性表明它们具有不同的功能。在膜峰波动处极化的 CD69 纳米域可能作为 TCR/CD3 诱导信号和激活的瞬时平台,而分布在膜谷波动处的 CD71 纳米域似乎有利于铁的摄取,以增加 T 细胞激活中的代谢。重要的是,这种基于 NSOM/QD 的荧光形貌图像融合为可视化细胞膜波动中细胞表面分子的纳米级空间分布提供了一种强大的工具,并有助于更好地理解分布-功能关系。

相似文献

4
Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations.
J Lipid Res. 2008 Oct;49(10):2268-75. doi: 10.1194/jlr.D800031-JLR200. Epub 2008 Jul 4.
8
[Effect of resveratrol on the activation of murine CD4(+);T lymphocytes].
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013 Jul;29(7):677-80.
10
Raman spectroscopic modeling of early versus late T-lymphocyte activation via differential spectral detection of receptor expression.
J Immunol Methods. 2014 Dec 15;415:31-5. doi: 10.1016/j.jim.2014.10.001. Epub 2014 Oct 20.

引用本文的文献

1
Insufficient Iron Improves Pristane-Induced Lupus by Promoting Treg Cell Expansion.
Front Immunol. 2022 Feb 28;13:799331. doi: 10.3389/fimmu.2022.799331. eCollection 2022.
2
Microgravity inhibits resting T cell immunity in an exposure time-dependent manner.
Int J Med Sci. 2013 Dec 21;11(1):87-96. doi: 10.7150/ijms.7651. eCollection 2014.
3
NSOM/QD-based visualization of GM1 serving as platforms for TCR/CD3 mediated T-cell activation.
Biomed Res Int. 2013;2013:276498. doi: 10.1155/2013/276498. Epub 2013 Oct 30.
4
Nanobarcoding: detecting nanoparticles in biological samples using in situ polymerase chain reaction.
Int J Nanomedicine. 2012;7:5625-39. doi: 10.2147/IJN.S37433. Epub 2012 Nov 2.

本文引用的文献

1
Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
Biophys J. 2011 Jan 19;100(2):L8-10. doi: 10.1016/j.bpj.2010.12.3690.
2
Imaging techniques for assaying lymphocyte activation in action.
Nat Rev Immunol. 2011 Jan;11(1):21-33. doi: 10.1038/nri2903.
3
Mechanisms for T cell receptor triggering.
Nat Rev Immunol. 2011 Jan;11(1):47-55. doi: 10.1038/nri2887. Epub 2010 Dec 3.
4
Cytoskeletal cross-talk in the control of T cell antigen receptor signaling.
FEBS Lett. 2010 Dec 15;584(24):4845-50. doi: 10.1016/j.febslet.2010.09.001. Epub 2010 Sep 7.
5
Cytotoxic immunological synapses.
Immunol Rev. 2010 May;235(1):24-34. doi: 10.1111/j.0105-2896.2010.00904.x.
6
CD69 limits early inflammatory diseases associated with immune response to Listeria monocytogenes infection.
Immunol Cell Biol. 2010 Oct;88(7):707-15. doi: 10.1038/icb.2010.62. Epub 2010 May 4.
7
Spatial organization and signal transduction at intercellular junctions.
Nat Rev Mol Cell Biol. 2010 May;11(5):342-52. doi: 10.1038/nrm2883. Epub 2010 Mar 31.
8
Functional anatomy of T cell activation and synapse formation.
Annu Rev Immunol. 2010;28:79-105. doi: 10.1146/annurev-immunol-030409-101308.
9
Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18557-62. doi: 10.1073/pnas.0905217106. Epub 2009 Oct 22.
10
Near-field optical study of protein transport kinetics at a single nuclear pore.
Nano Lett. 2009 Sep;9(9):3330-6. doi: 10.1021/nl901598z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验