Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
Neuroscience. 2011 Sep 29;192:642-51. doi: 10.1016/j.neuroscience.2011.06.037. Epub 2011 Jun 24.
Electroclinical investigations in human patients and experimental studies from genetic models demonstrated that spike-and-wave discharges (SWDs) associated with absence seizures have a cortical onset. In the Genetic Absence Epilepsy Rat from Strasbourg (GAERS), SWDs are initiated by the paroxysmal discharges of ictogenic pyramidal neurones located in the deep layers of the somatosensory cortex. However, the cellular and synaptic mechanisms that control the ictal discharges of seizure-initiating neurones remain unclear. Here, by the means of in vivo paired electroencephalographic (EEG) and intracellular recordings in the GAERS cortical focus, we explored the participation of the intracortical inhibitory system in the control of paroxysmal activities in ictogenic neurones. We found that their firing during EEG paroxysms was interrupted by the occurrence of hyperpolarizing synaptic events that reversed in polarity below action potential threshold. Intracellular injection of Cl(-) dramatically increased the amplitude of the paroxysmal depolarizations and the number of generated action potentials, strongly suggesting that the inhibitory synaptic potentials were mediated by GABA(A) receptors. Consistently, we showed that intracellularly recorded GABAergic interneurones fired, during seizures, shortly after (∼+8 ms) the discharge of ictogenic neurones and displayed a rhythmic bursting that coincided with the inhibitory synaptic events in neighbouring pyramidal ictogenic cells. In contrast with other forms of epilepsy, our findings suggest that paroxysmal activities in the cortical pyramidal cells initiating absence seizures are negatively controlled by a feedback Cl(-)-mediated inhibition likely resulting from the fast recurrent activation of intracortical GABAergic interneurones by the ictogenic cells themselves.
电临床研究在人类患者和实验研究的遗传模型表明,棘波和尖慢波放电(SWDs)与失神发作相关具有皮质起源。在斯特拉斯堡遗传失神癫痫大鼠(GAERS)中,SWDs 由位于感觉皮层深层的致痫性锥体神经元的阵发性放电引发。然而,控制起始癫痫发作神经元的发作放电的细胞和突触机制仍不清楚。在这里,通过在 GAERS 皮质焦点进行体内电生理(EEG)和细胞内记录的配对研究,我们探讨了皮质内抑制系统在控制致痫神经元阵发性活动中的参与。我们发现,它们在 EEG 发作期间的放电被去极化突触事件中断,这些事件在动作电位阈值以下反转极性。细胞内注入 Cl(-) 可显著增加阵发性去极化的幅度和产生的动作电位的数量,强烈表明抑制性突触电位是由 GABA(A) 受体介导的。一致地,我们表明,在发作期间,细胞内记录的 GABA 能中间神经元在致痫神经元放电后(约+8ms)放电,并显示出与邻近的锥体致痫细胞中的抑制性突触事件相吻合的节律性爆发。与其他形式的癫痫不同,我们的发现表明,起始失神发作的皮质锥体细胞的阵发性活动受到负反馈 Cl(-) 介导的抑制的控制,这可能是由致痫细胞自身快速反复激活皮质内 GABA 能中间神经元引起的。