Suppr超能文献

失神癫痫大鼠在自发棘波和慢波放电期间丘脑神经元的细胞内记录。

Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy.

作者信息

Pinault D, Leresche N, Charpier S, Deniau J M, Marescaux C, Vergnes M, Crunelli V

机构信息

INSERM U398, Faculte de Medecine, 11 rue Humann, 67085 Strasbourg, France.

出版信息

J Physiol. 1998 Jun 1;509 ( Pt 2)(Pt 2):449-56. doi: 10.1111/j.1469-7793.1998.449bn.x.

Abstract
  1. In vivo extracellular and intracellular recordings were performed from thalamocortical (TC) neurones in a genetic model of absence epilepsy (genetic absence epilepsy rats from Strasbourg) during spontaneous spike and wave discharges (SWDs). 2. Extracellularly recorded single units (n = 14) fired either a single action potential or a high frequency burst of up to three action potentials, concomitantly with the spike component of the spike-wave complex. 3. Three main events characterized the intracellular activity of twenty-six out of twenty-eight TC neurones during SWDs: a small amplitude tonic hyperpolarization that was present throughout the SWD, rhythmic sequences of EPSP/IPSPs occurring concomitantly with the spike-wave complexes, and a small tonic depolarization at the end of the SWD. The rhythmic IPSPs, but not the tonic hyperpolarization, were mediated by activation of GABAA receptors since they reversed in polarity at -68 mV and appeared as depolarizing events when recording with KCl-filled electrodes. 4. The intracellular activity of the remaining two TC neurones consisted of rhythmic low threshold Ca2+ potentials, with a few EPSP/IPSP sequences present at the start of the SWD. 5. These results obtained in a well-established genetic model of absence epilepsy do not support the hypothesis that the intracellular activity of TC neurones during SWDs involves rhythmic sequences of GABAB IPSPs and low threshold Ca2+ potentials.
摘要
  1. 在失神癫痫的遗传模型(来自斯特拉斯堡的遗传性失神癫痫大鼠)中,于自发棘波和慢波放电(SWDs)期间,对丘脑皮质(TC)神经元进行了体内细胞外和细胞内记录。2. 细胞外记录的单个单位(n = 14)在棘慢复合波的棘波成分出现时,要么发放单个动作电位,要么发放高达三个动作电位的高频爆发。3. 在SWDs期间,28个TC神经元中的26个的细胞内活动有三个主要特征:整个SWD期间存在的小幅度强直超极化、与棘慢复合波同时出现的EPSP/IPSP的节律性序列,以及SWD结束时的小幅度强直去极化。节律性IPSPs而非强直超极化是由GABAA受体激活介导的,因为它们在-68 mV时极性反转,在用充满KCl的电极记录时表现为去极化事件。4. 其余两个TC神经元的细胞内活动由节律性低阈值Ca2+电位组成,在SWD开始时出现一些EPSP/IPSP序列。5. 在一个成熟的失神癫痫遗传模型中获得的这些结果不支持如下假设,即SWDs期间TC神经元的细胞内活动涉及GABAB IPSPs和低阈值Ca2+电位的节律性序列。

相似文献

1
Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy.
J Physiol. 1998 Jun 1;509 ( Pt 2)(Pt 2):449-56. doi: 10.1111/j.1469-7793.1998.449bn.x.
3
Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges.
J Neurosci. 2002 Mar 15;22(6):2323-34. doi: 10.1523/JNEUROSCI.22-06-02323.2002.
6
Seizure-related activity of intralaminar thalamic neurons in a genetic model of absence epilepsy.
Neurobiol Dis. 2011 Jul;43(1):266-74. doi: 10.1016/j.nbd.2011.03.019. Epub 2011 Mar 31.
7
8
Chloride-mediated inhibition of the ictogenic neurones initiating genetically-determined absence seizures.
Neuroscience. 2011 Sep 29;192:642-51. doi: 10.1016/j.neuroscience.2011.06.037. Epub 2011 Jun 24.
9
Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations.
J Physiol. 2003 Nov 1;552(Pt 3):881-905. doi: 10.1113/jphysiol.2003.046573. Epub 2003 Aug 15.
10
Intracellular activity of cortical and thalamic neurones during high-voltage rhythmic spike discharge in Long-Evans rats in vivo.
J Physiol. 2006 Mar 1;571(Pt 2):461-76. doi: 10.1113/jphysiol.2005.100925. Epub 2006 Jan 12.

引用本文的文献

1
Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model.
CNS Neurosci Ther. 2024 Mar;30(3):e14204. doi: 10.1111/cns.14204. Epub 2023 Apr 10.
2
Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets.
Neurobiol Dis. 2023 Jun 1;181:106094. doi: 10.1016/j.nbd.2023.106094. Epub 2023 Mar 27.
3
Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats.
Elife. 2022 Jan 4;11:e72898. doi: 10.7554/eLife.72898.
4
Retrosplenial Cortex Contributes to Network Changes during Seizures in the GAERS Absence Epilepsy Rat Model.
Cereb Cortex Commun. 2021 Mar 23;2(2):tgab023. doi: 10.1093/texcom/tgab023. eCollection 2021.
5
Experimental Models of Absence Epilepsy.
Basic Clin Neurosci. 2020 Nov-Dec;11(6):715-726. doi: 10.32598/bcn.11.6.731.1. Epub 2020 Nov 1.
6
Dynamical mesoscale model of absence seizures in genetic models.
PLoS One. 2020 Sep 29;15(9):e0239125. doi: 10.1371/journal.pone.0239125. eCollection 2020.
8
Establishing Drug Effects on Electrocorticographic Activity in a Genetic Absence Epilepsy Model: Advances and Pitfalls.
Front Pharmacol. 2020 Apr 14;11:395. doi: 10.3389/fphar.2020.00395. eCollection 2020.
9
Regulation and control roles of the basal ganglia in the development of absence epileptiform activities.
Cogn Neurodyn. 2020 Feb;14(1):137-154. doi: 10.1007/s11571-019-09559-4. Epub 2019 Oct 8.

本文引用的文献

1
Morphology and membrane properties of neurones in the cat ventrobasal thalamus in vitro.
J Physiol. 1997 Dec 15;505 ( Pt 3)(Pt 3):707-26. doi: 10.1111/j.1469-7793.1997.707ba.x.
2
In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation.
Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7036-40. doi: 10.1073/pnas.94.13.7036.
3
What stops synchronized thalamocortical oscillations?
Neuron. 1996 Aug;17(2):297-308. doi: 10.1016/s0896-6273(00)80161-0.
5
Primary (idiopathic) generalized epilepsy and underlying mechanisms.
Clin Electroencephalogr. 1996 Jan;27(1):1-21. doi: 10.1177/155005949602700103.
6
Cellular mechanisms of a synchronized oscillation in the thalamus.
Science. 1993 Jul 16;261(5119):361-4. doi: 10.1126/science.8392750.
7
Basic mechanisms of generalized absence seizures.
Ann Neurol. 1995 Feb;37(2):146-57. doi: 10.1002/ana.410370204.
8
Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
J Neurosci. 1995 Jan;15(1 Pt 2):623-42. doi: 10.1523/JNEUROSCI.15-01-00623.1995.
9
Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro.
J Physiol. 1995 Mar 15;483 ( Pt 3)(Pt 3):665-85. doi: 10.1113/jphysiol.1995.sp020613.
10
Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro.
J Physiol. 1995 Mar 15;483 ( Pt 3)(Pt 3):641-63. doi: 10.1113/jphysiol.1995.sp020612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验