Purpura D P
Res Publ Assoc Res Nerv Ment Dis. 1979;57:43-68.
Visualization of the neuron in its entirety through the use of the rapid Golgi method has permitted detection of several pathobiological features of neurons that are intimately associated with profound mental retardation in infants and children. In cases of unclassified mental retardation, dendrites and particularly dendritic spines exhibit severe developmental abnormalities. Dendritic spines, the postsynaptic components of axospinodendritic synapses, may be absent or abnormally long and thin in retardates. Evidence is presented that some cases of progressive neurobehavioral deterioration in infancy and early childhood may be due to progressive degeneration of dendritic spine systems (dendritic spine "dysgenesis"). Golgi and electron microscopic studies of neurons in human and feline ganglioside storage diseases indicate that ganglioside accumulation in cortical neurons initiates several complex alterations in neuronal geometry and morphology. Small and medium pyramidal cells form massive structural compartments (meganeurites) that frequently give rise to secondary neurites and other embryonic growth processes. Meganeurites may possess spines and spine-synapses. Other cells such as large pyramidal neurons may exhibit many somatic spines, whereas intrinsic cells of the cortex (and caudate) are unaffected morphologically by ganglioside accumulation. It is suggested that neuronal geometry distortion and aberrant synaptogenesis are important factors in the onset of neuronal dysfunction in ganglioside storage disorders. These studies also point to an important role of gangliosides in neurite formation in immature mammalian cortical neurons. Perisomatic processes and somatic spines are normal morphological components of the cell body of Purkinje cells through the 28th fetal week of human gestation. By 36 weeks the Purkinje cell somas exhibit a smooth surface contour. Prominent polydendritic processes, perisomatic protuberances, and somatic spines are detectable by Golgi methods applied to Purkinje cells in Menkes' disease and Down's syndrome long after these somatic components should normally disappear. Thus Purkinje cell soma membrane differentiation is a particularly sensitive process that can provide information on mechanisms of site-specific membrane regulation.
通过使用快速高尔基方法对神经元进行整体可视化,已能够检测到与婴幼儿严重智力迟钝密切相关的几种神经元病理生物学特征。在未分类的智力迟钝病例中,树突,尤其是树突棘表现出严重的发育异常。树突棘是轴突-树突棘突触的突触后成分,在智力迟钝者中可能缺失或异常细长。有证据表明,婴幼儿和儿童期一些进行性神经行为退化病例可能是由于树突棘系统的进行性退化(树突棘“发育异常”)。对人类和猫类神经节苷脂贮积病中神经元的高尔基和电子显微镜研究表明,皮质神经元中神经节苷脂的积累引发了神经元几何形状和形态的几种复杂改变。中小锥体细胞形成大量结构区室(巨型神经突),这些区室经常产生次级神经突和其他胚胎生长过程。巨型神经突可能具有棘和棘突触。其他细胞,如大锥体细胞,可能表现出许多体细胞棘,而皮质(和尾状核)的固有细胞在形态上不受神经节苷脂积累的影响。有人提出,神经元几何形状的扭曲和异常的突触形成是神经节苷脂贮积病中神经元功能障碍发生的重要因素。这些研究还指出神经节苷脂在未成熟哺乳动物皮质神经元神经突形成中的重要作用。在人类妊娠的第28周之前,躯体周围突起和体细胞棘是浦肯野细胞胞体的正常形态组成部分。到36周时,浦肯野细胞胞体呈现出光滑的表面轮廓。在门克斯病和唐氏综合征中,应用于浦肯野细胞的高尔基方法可检测到明显的多树突状突起、躯体周围隆起和体细胞棘,而这些体细胞成分通常应在很久之后消失。因此,浦肯野细胞胞体膜分化是一个特别敏感的过程,它可以提供有关位点特异性膜调节机制的信息。