Suppr超能文献

颌口类动物咀嚼过程中驱动颌部和舌骨运动的肌肉活动模式的演变。

Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

出版信息

Integr Comp Biol. 2011 Aug;51(2):235-46. doi: 10.1093/icb/icr040. Epub 2011 Jun 24.

Abstract

Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.

摘要

虽然咀嚼被认为是大多数主要脊椎动物谱系中保留的基干颌类特征,但它在脊椎动物中并没有被广泛而系统地研究过。为了纠正这种不平衡,我们记录了舌骨和下颌骨在咀嚼过程中前后运动和上下运动的肌肉肌电图。我们比较了属于不同基础硬骨鱼类和偶蹄类哺乳动物的有颌脊椎动物类群在咀嚼过程中的肌肉活动模式(MAP)。我们的目的是概述 MAP 协调的进化。通过交叉相关分析比较了密切相关的偶蹄类动物中咀嚼时用于驱动下颌和舌骨的肌肉的活动,发现了食草动物和杂食动物之间下颌和舌骨 MAP 的重组。来自基础硬骨鱼类的肌电图数据显示,在咀嚼过程中,下颌和舌骨的 MAP 比偶蹄类动物更为协调。在这个广泛的系统发育范围内,发生了重大的结构重组,包括减少了鱼类中坚固的舌骨悬韧带,并在哺乳动物祖先中获得了一个肌肉吊带来悬挂舌骨。这些变化似乎反映在咀嚼 MAP 的变化上,这种变化发生在一个未被识别的无颌脊椎动物谱系中。这种转变与观察结果一致,即与鱼类相比,四足动物的舌骨运动模式是反转的,并且相对于下颌运动的模式也存在时间上的偏移。

相似文献

1
Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.
Integr Comp Biol. 2011 Aug;51(2):235-46. doi: 10.1093/icb/icr040. Epub 2011 Jun 24.
2
Coordination of cortically induced rhythmic jaw and tongue movements in the rabbit.
J Neurophysiol. 1993 Feb;69(2):569-84. doi: 10.1152/jn.1993.69.2.569.
3
A dynamic model of jaw and hyoid biomechanics during chewing.
J Biomech. 2008;41(5):1069-76. doi: 10.1016/j.jbiomech.2007.12.001. Epub 2008 Jan 14.
4
A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.
Integr Comp Biol. 2011 Aug;51(2):247-59. doi: 10.1093/icb/icr068. Epub 2011 Jun 29.
6
Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi).
J Morphol. 1986 Jan;187(1):81-108. doi: 10.1002/jmor.1051870108.
7
Changes in jaw muscle activity and the physical properties of foods with different textures during chewing behaviors.
Physiol Behav. 2015 Dec 1;152(Pt A):217-24. doi: 10.1016/j.physbeh.2015.10.004. Epub 2015 Oct 9.
8
Movement of the hyoid apparatus during chewing.
Nature. 1975 Nov 6;258(5530):69-70. doi: 10.1038/258069a0.
9
Patterns of tongue and jaw movement in a cinefluorographic study of feeding in the macaque.
Arch Oral Biol. 1995 Mar;40(3):229-46. doi: 10.1016/0003-9969(95)98812-d.
10
Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes.
J Exp Biol. 2010 Jun 1;213(11):1868-75. doi: 10.1242/jeb.041012.

引用本文的文献

1
Muscle function and electromyography: (almost) 70 years since Doty and Bosma (1956).
J Neurophysiol. 2025 Jul 1;134(1):337-346. doi: 10.1152/jn.00176.2025. Epub 2025 Jun 23.
2
Co-option of neck muscles supported the vertebrate water-to-land transition.
Nat Commun. 2024 Dec 4;15(1):10564. doi: 10.1038/s41467-024-54724-x.
3
Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition.
Philos Trans R Soc Lond B Biol Sci. 2023 Dec 4;378(1891):20220541. doi: 10.1098/rstb.2022.0541. Epub 2023 Oct 16.
4
Do salamanders chew? An X-ray reconstruction of moving morphology analysis of ambystomatid intraoral feeding behaviours.
Philos Trans R Soc Lond B Biol Sci. 2023 Dec 4;378(1891):20220540. doi: 10.1098/rstb.2022.0540. Epub 2023 Oct 16.
5
6
Cetacean tongue mobility and function: A comparative review.
J Anat. 2023 Sep;243(3):343-373. doi: 10.1111/joa.13876. Epub 2023 Apr 12.
7
Anatomical and physiological variation of the hyoid musculature during swallowing in infant pigs.
J Exp Biol. 2021 Nov 1;224(21). doi: 10.1242/jeb.243075. Epub 2021 Nov 4.
9
Flexibility is everything: prey capture throughout the seasonal habitat switches in the smooth newt .
Org Divers Evol. 2015;15(1):127-142. doi: 10.1007/s13127-014-0187-1. Epub 2014 Oct 31.

本文引用的文献

5
Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models.
J Morphol. 1990 Sep;205(3):269-295. doi: 10.1002/jmor.1052050304.
6
THE EVOLUTION OF TETRAPOD FEEDING BEHAVIOR: KINEMATIC HOMOLOGIES IN PREY TRANSPORT.
Evolution. 1990 Sep;44(6):1542-1557. doi: 10.1111/j.1558-5646.1990.tb03845.x.
7
Overview of FEED, the feeding experiments end-user database.
Integr Comp Biol. 2011 Aug;51(2):215-23. doi: 10.1093/icb/icr047. Epub 2011 Jun 22.
8
Modulation of intra-oral processing in mammals and lepidosaurs.
Integr Comp Biol. 2007 Jul;47(1):118-36. doi: 10.1093/icb/icm044. Epub 2007 May 27.
9
Electromyography and the evolution of motor control: limitations and insights.
Integr Comp Biol. 2008 Aug;48(2):261-71. doi: 10.1093/icb/icn025. Epub 2008 Apr 28.
10
Congruence between muscle activity and kinematics in a convergently derived prey-processing behavior.
Integr Comp Biol. 2008 Aug;48(2):246-60. doi: 10.1093/icb/icn045. Epub 2008 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验