Suppr超能文献

纳米结构 Ti(0.7)Mo(0.3)O2 载体增强了 Pt 的电子转移:用于氧还原反应的高性能催化剂。

Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction.

机构信息

NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.

出版信息

J Am Chem Soc. 2011 Aug 3;133(30):11716-24. doi: 10.1021/ja2039562. Epub 2011 Jul 12.

Abstract

The slow rate of the oxygen reduction reaction (ORR) and the instability of Pt-based catalysts are two of the most important issues that must be solved in order to make proton exchange membrane fuel cells (PEMFCs) a reality. Additionally, the serious carbon corrosion on the cathode side is a critical problem with respect to the durability of catalyst that limits its wide application. Here, we present a new approach by exploring robust noncarbon Ti(0.7)Mo(0.3)O(2) used as a novel functionalized cocatalytic support for Pt. This approach is based on the novel nanostructure Ti(0.7)Mo(0.3)O(2) support with "electronic transfer mechanism" from Ti(0.7)Mo(0.3)O(2) to Pt that can modify the surface electronic structure of Pt, owing to a shift in the d-band center of the surface Pt atoms. Furthermore, another benefit of Ti(0.7)Mo(0.3)O(2) is the extremely high stability of Pt/Ti(0.7)Mo(0.3)O(2) during potential cycling, which is attributable to the strong metal/support interaction (SMSI) between Pt and Ti(0.7)Mo(0.3)O(2). This also enhances the inherent structural and chemical stability and the corrosion resistance of the TiO(2)-based oxide in acidic and oxidative environments. We also demonstrate that the ORR current densities generated using cocatalytic Pt/Ti(0.7)Mo(0.3)O(2) are respectively ~7- and 2.6-fold higher than those of commercial Pt/C and PtCo/C catalysts with the same Pt loading. This new approach opens a reliable path to the discovery advanced concept in designing new catalysts that can replace the traditional catalytic structure and motivate further research in the field.

摘要

氧还原反应(ORR)的缓慢速率和铂基催化剂的不稳定性是质子交换膜燃料电池(PEMFC)实现的两个最重要的问题。此外,阴极侧严重的碳腐蚀是限制其广泛应用的催化剂耐久性的关键问题。在这里,我们探索了一种新的方法,即使用作为新型功能化共催化支持的稳定的非碳 Ti(0.7)Mo(0.3)O(2)。这种方法基于 Ti(0.7)Mo(0.3)O(2) 新型纳米结构的支持,具有从 Ti(0.7)Mo(0.3)O(2) 到 Pt 的“电子传递机制”,可以通过表面 Pt 原子的 d 带中心的位移来修饰 Pt 的表面电子结构。此外,Ti(0.7)Mo(0.3)O(2)的另一个好处是 Pt/Ti(0.7)Mo(0.3)O(2) 在电势循环过程中的极高稳定性,这归因于 Pt 和 Ti(0.7)Mo(0.3)O(2) 之间的强金属/载体相互作用(SMSI)。这也增强了基于 TiO(2)的氧化物在酸性和氧化性环境中的固有结构和化学稳定性以及耐腐蚀性。我们还证明,使用共催化 Pt/Ti(0.7)Mo(0.3)O(2)产生的 ORR 电流密度分别比具有相同 Pt 负载的商用 Pt/C 和 PtCo/C 催化剂高 7 倍和 2.6 倍。这种新方法为发现能够替代传统催化结构的先进概念开辟了可靠的途径,并推动了该领域的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验