Suppr超能文献

动物飞行机动性的机制和意义。

Mechanisms and implications of animal flight maneuverability.

机构信息

Section of Integrative Biology, University of Texas, Austin, Texas 78712 and Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Republic of Panama.

出版信息

Integr Comp Biol. 2002 Feb;42(1):135-40. doi: 10.1093/icb/42.1.135.

Abstract

Accelerations and directional changes of flying animals derive from interactions between aerodynamic force production and the inertial resistance of the body to translation and rotation. Anatomical and allometric features of body design thus mediate the rapidity of aerial maneuvers. Both translational and rotational responsiveness of the body to applied force decrease with increased total mass. For flying vertebrates, contributions of the relatively heavy wings to whole-body rotational inertia are substantial, whereas the relatively light wings of many insect taxa suggest that rotational inertia is dominated by the contributions of body segments. In some circumstances, inertial features of wing design may be as significant as are their aerodynamic properties in influencing the rapidity of body rotations. Stability in flight requires force and moment balances that are usually attained via bilateral symmetry in wingbeat kinematics, whereas body roll and yaw derive from bilaterally asymmetric movements of both axial and appendicular structures. In many flying vertebrates, use of the tail facilitates the generation of aerodynamic torques and substantially enhances quickness of body rotation. Geometrical constraints on wingbeat kinematics may limit total force production and thus accelerational capacity in certain behavioral circumstances. Unitary limits to animal flight performance and maneuverability are unlikely, however, given varied and context-specific interactions among anatomical, biomechanical, and energetic features of design.

摘要

飞行动物的加速度和方向变化源于空气动力产生与身体对平移和旋转的惯性阻力之间的相互作用。因此,身体设计的解剖学和比例特征调节了空中机动的速度。身体对施加力的平移和旋转响应都随着总质量的增加而降低。对于飞行的脊椎动物,相对较重的翅膀对整个身体的转动惯量的贡献是巨大的,而许多昆虫类群相对较轻的翅膀表明,转动惯量主要由身体节段的贡献决定。在某些情况下,机翼设计的惯性特征可能与空气动力学特性一样重要,它们会影响身体旋转的速度。飞行稳定性需要力和力矩的平衡,通常通过翅膀运动学的双侧对称来实现,而身体的滚转和偏航则来自轴向和附肢结构的双侧不对称运动。在许多飞行的脊椎动物中,尾巴的使用有助于产生空气动力扭矩,并大大提高身体旋转的敏捷性。翅膀运动学的几何限制可能会限制总力的产生,从而在某些行为情况下限制加速度能力。然而,由于设计的解剖学、生物力学和能量特征之间存在多样且特定于情境的相互作用,动物飞行性能和机动性的单一限制是不太可能的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验