Uche C Z, Round W H, Cree M J
School of Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
Australas Phys Eng Sci Med. 2011 Sep;34(3):351-60. doi: 10.1007/s13246-011-0085-1. Epub 2011 Jun 28.
We present a quantitative study on the performance of cadmium zinc telluride (CZT), thallium-doped sodium iodide (NaI(Tl)) and germanium (Ge) detectors as potential Compton camera absorbers. The GEANT4 toolkit was used to model the performance of these materials over the nuclear medicine energy range. CZT and Ge demonstrate the highest and lowest efficiencies respectively. Although the best spatial resolution was attained for Ge, its lowest ratio of single photoelectric to multiple interactions suggests that it is most prone to inter-pixel cross-talk. In contrast, CZT, which demonstrates the least positioning error due to multiple interactions, has a comparable spatial resolution with Ge. Therefore, we modelled a Compton camera system based on silicon (Si) and CZT as the scatterer and absorber respectively. The effects of the detector parameters of our proposed system on image resolution were evaluated and our results show good agreement with previous studies. Interestingly, spatial resolution which accounted for the least image degradation at 140.5 keV became the dominant degrading factor at 511 keV, indicating that the absorber parameters play some key roles at higher energies. The results of this study have validated the predictions by An et al. which state that the use of a higher energy gamma source together with reduction of the absorber segmentation to sub-millimetre could achieve the image resolution of 5 mm required in medical imaging.
我们对碲锌镉(CZT)、碘化钠铊(NaI(Tl))和锗(Ge)探测器作为潜在康普顿相机吸收体的性能进行了定量研究。使用GEANT4工具包对这些材料在核医学能量范围内的性能进行建模。CZT和Ge分别表现出最高和最低的效率。尽管Ge获得了最佳的空间分辨率,但其单光电与多次相互作用的最低比率表明它最容易出现像素间串扰。相比之下,由于多次相互作用导致定位误差最小的CZT,其空间分辨率与Ge相当。因此,我们分别基于硅(Si)和CZT作为散射体和吸收体对康普顿相机系统进行了建模。评估了我们提出的系统的探测器参数对图像分辨率的影响,我们的结果与先前的研究显示出良好的一致性。有趣的是,在140.5 keV时对图像退化影响最小的空间分辨率在511 keV时成为主要的退化因素,这表明吸收体参数在更高能量下起着一些关键作用。本研究的结果验证了An等人的预测,即使用更高能量的伽马源并将吸收体分割减小到亚毫米可以实现医学成像所需的5毫米图像分辨率。