Suppr超能文献

基于集成分类器和错误分类拒绝的光谱分类器设计:在用于结肠肿瘤检测的弹性散射光谱学中的应用。

Spectral classifier design with ensemble classifiers and misclassification-rejection: application to elastic-scattering spectroscopy for detection of colonic neoplasia.

机构信息

Boston University Medical Campus, Department of Medicine, Section of Gastroenterology, School of Medicine, Suite 504, 650 Albany Street, Boston, Massachusetts 02118, USA.

出版信息

J Biomed Opt. 2011 Jun;16(6):067009. doi: 10.1117/1.3592488.

Abstract

Optical spectroscopy has shown potential as a real-time, in vivo, diagnostic tool for identifying neoplasia during endoscopy. We present the development of a diagnostic algorithm to classify elastic-scattering spectroscopy (ESS) spectra as either neoplastic or non-neoplastic. The algorithm is based on pattern recognition methods, including ensemble classifiers, in which members of the ensemble are trained on different regions of the ESS spectrum, and misclassification-rejection, where the algorithm identifies and refrains from classifying samples that are at higher risk of being misclassified. These "rejected" samples can be reexamined by simply repositioning the probe to obtain additional optical readings or ultimately by sending the polyp for histopathological assessment, as per standard practice. Prospective validation using separate training and testing sets result in a baseline performance of sensitivity = .83, specificity = .79, using the standard framework of feature extraction (principal component analysis) followed by classification (with linear support vector machines). With the developed algorithm, performance improves to Se ∼ 0.90, Sp ∼ 0.90, at a cost of rejecting 20-33% of the samples. These results are on par with a panel of expert pathologists. For colonoscopic prevention of colorectal cancer, our system could reduce biopsy risk and cost, obviate retrieval of non-neoplastic polyps, decrease procedure time, and improve assessment of cancer risk.

摘要

光学光谱学已显示出作为内窥镜检查中识别肿瘤的实时、体内诊断工具的潜力。我们提出了一种诊断算法的开发,以将弹性散射光谱(ESS)谱分类为肿瘤或非肿瘤。该算法基于模式识别方法,包括集成分类器,其中集成的成员在 ESS 光谱的不同区域进行训练,以及错误分类拒绝,其中算法识别并避免对误分类风险较高的样本进行分类。这些“拒绝”的样本可以通过简单地重新定位探头以获得额外的光学读数,或者最终通过按照标准实践将息肉送去进行组织病理学评估来重新检查。使用单独的训练集和测试集进行前瞻性验证,在使用标准特征提取(主成分分析)框架进行分类(使用线性支持向量机)之后,基线性能的灵敏度为.83,特异性为.79。通过开发的算法,性能提高到 Se ∼ 0.90,Sp ∼ 0.90,但代价是拒绝 20-33%的样本。这些结果与一组专家病理学家相当。对于结肠镜预防结直肠癌,我们的系统可以降低活检风险和成本,避免非肿瘤性息肉的取回,减少手术时间,并提高癌症风险评估。

相似文献

2
Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy.
Gastrointest Endosc. 2015 Mar;81(3):539-47. doi: 10.1016/j.gie.2014.07.012. Epub 2014 Sep 23.
3
Artificial Intelligence-Based Assessment of Colorectal Polyp Histology by Elastic-Scattering Spectroscopy.
Dig Dis Sci. 2022 Feb;67(2):613-621. doi: 10.1007/s10620-021-06901-x. Epub 2021 Mar 24.
4
Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging.
Comput Med Imaging Graph. 2014 Jun;38(4):267-75. doi: 10.1016/j.compmedimag.2013.12.009. Epub 2014 Jan 2.
5
Automatic segmentation of polyps in colonoscopic narrow-band imaging data.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2144-51. doi: 10.1109/TBME.2012.2195314. Epub 2012 Apr 19.
6
Computer-assisted assessment of colonic polyp histopathology using probe-based confocal laser endomicroscopy.
Int J Colorectal Dis. 2019 Dec;34(12):2043-2051. doi: 10.1007/s00384-019-03406-y. Epub 2019 Nov 6.
7
Optical classification of neoplastic colorectal polyps - a computer-assisted approach (the COACH study).
Scand J Gastroenterol. 2018 Sep;53(9):1100-1106. doi: 10.1080/00365521.2018.1501092. Epub 2018 Sep 29.
8
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.
Nat Biomed Eng. 2018 Oct;2(10):741-748. doi: 10.1038/s41551-018-0301-3. Epub 2018 Oct 10.
9
Near real-time retroflexion detection in colonoscopy.
IEEE J Biomed Health Inform. 2013 Jan;17(1):143-52. doi: 10.1109/TITB.2012.2226595. Epub 2012 Oct 26.
10
Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps.
Gastroenterology. 2010 Mar;138(3):834-42. doi: 10.1053/j.gastro.2009.10.053. Epub 2009 Nov 10.

引用本文的文献

1
Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer.
World J Gastrointest Oncol. 2022 Jan 15;14(1):124-152. doi: 10.4251/wjgo.v14.i1.124.
2
Spectral response of optical fiber probe with closely spaced fibers.
Quant Imaging Med Surg. 2021 Mar;11(3):1023-1032. doi: 10.21037/qims-20-816.
3
Advanced endoscopic imaging for detecting and guiding therapy of early neoplasias of the esophagus.
Ann N Y Acad Sci. 2020 Dec;1482(1):61-76. doi: 10.1111/nyas.14523. Epub 2020 Nov 12.
4
Computer-assisted assessment of colonic polyp histopathology using probe-based confocal laser endomicroscopy.
Int J Colorectal Dis. 2019 Dec;34(12):2043-2051. doi: 10.1007/s00384-019-03406-y. Epub 2019 Nov 6.
7
Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy.
Gastrointest Endosc. 2015 Mar;81(3):539-47. doi: 10.1016/j.gie.2014.07.012. Epub 2014 Sep 23.
9
Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes.
Inflamm Bowel Dis. 2014 Jun;20(6):1029-36. doi: 10.1097/MIB.0000000000000058.

本文引用的文献

3
INTEGRATED OPTICAL TOOLS FOR MINIMALLY INVASIVE DIAGNOSIS AND TREATMENT AT GASTROINTESTINAL ENDOSCOPY.
Robot Comput Integr Manuf. 2011 Apr 1;27(2):249-256. doi: 10.1016/j.rcim.2010.06.006.
7
Narrow-band imaging without optical magnification for histologic analysis of colorectal polyps.
Gastroenterology. 2009 Apr;136(4):1174-81. doi: 10.1053/j.gastro.2008.12.009. Epub 2008 Dec 10.
9
Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo.
Appl Opt. 1999 Nov 1;38(31):6628-37. doi: 10.1364/ao.38.006628.
10
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验