Jacques Steven L
Department of Bioengineering, University of Washington, Seattle, WA, USA.
Quant Imaging Med Surg. 2021 Mar;11(3):1023-1032. doi: 10.21037/qims-20-816.
Optical fiber probe spectroscopy can characterize the blood content, hemoglobin oxygen saturation, water content, and scattering properties of a tissue. A narrow probe using closely spaced fibers can access and characterize a local tissue site, but analysis requires the proper light transport theory.
Monte Carlo simulations of photon transport specified the response of a two-fiber probe as a function of optical properties in a homogeneous tissue. The simulations used the dimensions of a commercial fiber probe (400-micron-diameter fibers separated by 80-microns of cladding) to calculate the response to a range of 20 absorption and 20 reduced scattering values. The 400 simulations yielded an analysis grid (lookup table) to interpolate the probe response to any given pair of absorption and scattering properties.
The probe in contact with tissue is not sensitive to low absorption but sensitive to scattering, as occurs for red to near-infrared spectra. The probe is sensitive to both absorption and scattering for shorter visible spectra (purple-orange). The non-contact probe held above the tissue delivers light to/from a spot on the tissue and fails to collect light that spreads laterally to escape outside the collection spot. Such partial collection can distort the spectra.
Optical fiber spectroscopy using closely spaced fibers requires proper calibration. An analysis subroutine is provided for analysis of a two-fiber probe with the dimensions of a commercial probe (Ocean Insight), but the method can be applied to any probe design. A closely spaced fiber probe can document blood in the shorter visible wavelengths, but has difficulty detecting red and near-infra-red absorption. Hence detection of hydration is difficult. The strength of the closely spaced fiber probe is detecting scattering that depends on tissue structure at the micron to sub-micron scale.
光纤探针光谱技术能够对组织的血液含量、血红蛋白氧饱和度、水分含量以及散射特性进行表征。使用紧密排列光纤的窄探针可以检测并表征局部组织部位,但分析需要合适的光传输理论。
光子传输的蒙特卡洛模拟确定了双光纤探针在均匀组织中作为光学特性函数的响应。模拟使用了商用光纤探针的尺寸(直径400微米的光纤,包层间距80微米)来计算对20种吸收值和20种约化散射值范围内的响应。这400次模拟生成了一个分析网格(查找表),用于内插探针对任何给定吸收和散射特性对的响应。
与组织接触的探针对低吸收不敏感,但对散射敏感,如在红色到近红外光谱中所见。对于较短的可见光谱(紫色 - 橙色),探针对吸收和散射都敏感。置于组织上方的非接触式探针将光传输到组织上的一个点或从该点传输光,但无法收集横向扩散到收集点之外的光。这种部分收集会使光谱失真。
使用紧密排列光纤的光纤光谱技术需要进行适当校准。提供了一个分析子程序,用于分析具有商用探针(海洋光学公司)尺寸的双光纤探针,但该方法可应用于任何探针设计。紧密排列的光纤探针可以记录较短可见波长下的血液情况,但难以检测红色和近红外吸收。因此,检测水合作用存在困难。紧密排列光纤探针的优势在于检测依赖于微米至亚微米尺度组织结构的散射。