Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.
Shanghai Wision AI Co., Ltd, Shanghai, China.
Nat Biomed Eng. 2018 Oct;2(10):741-748. doi: 10.1038/s41551-018-0301-3. Epub 2018 Oct 10.
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 ± 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.
通过结肠镜检查检测和切除癌前息肉是预防结肠癌的金标准。然而,腺瘤性息肉的检测率在不同的内镜医生之间可能有很大的差异。在这里,我们展示了一种机器学习算法,可以实时、高灵敏度和高特异性地检测临床结肠镜检查中的息肉。我们使用来自 1290 名患者的数据开发了深度学习算法,并在来自 1138 名至少有一个检测到息肉的患者的新收集的 27113 个结肠镜图像(每张图像的灵敏度为 94.38%,每张图像的特异性为 95.92%,接收者操作特征曲线下面积为 0.984)、来自包含 612 个息肉图像的公共数据库(每张图像的灵敏度为 88.24%)、138 个经组织学证实有息肉的结肠镜检查视频(每张图像的灵敏度为 91.64%,每个息肉的灵敏度为 100%)以及 54 个无息肉的未经修改的全范围结肠镜检查视频(每张图像的特异性为 95.40%)上进行了验证。通过使用多线程处理系统,该算法可以在实时视频分析中以每秒至少 25 帧的速度和 76.80±5.60ms 的延迟进行处理。该软件可以帮助内镜医生进行结肠镜检查,并有助于评估内镜医生在息肉和腺瘤检测性能方面的差异。