Suppr超能文献

叶黄素循环——一种保护植物免受氧化应激的机制。

Xanthophyll cycle--a mechanism protecting plants against oxidative stress.

机构信息

Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

出版信息

Redox Rep. 2011;16(2):78-90. doi: 10.1179/174329211X13020951739938.

Abstract

Six different xanthophyll cycles have been described in photosynthetic organisms. All of them protect the photosynthetic apparatus from photodamage caused by light-induced oxidative stress. Overexcitation conditions lead, in the chloroplast, to the over-reduction of the NADP pool and production of superoxide, which can subsequently be metabolized to hydrogen peroxide or a hydroxyl radical, other reactive oxygen species (ROS). On the other hand, overexcitation of photosystems leads to an increased lifetime of the chlorophyll excited state, increasing the probability of chlorophyll triplet formation which reacts with triplet oxygen forming single oxygen, another ROS. The products of the light-dependent phase of xanthophyll cycles play an important role in the protection against oxidative stress generated not only by an excess of light but also by other ROS-generating factors such as drought, chilling, heat, senescence, or salinity stress. Four, mainly hypothetical, mechanisms explaining the protective role of xanthophyll cycles in oxidative stress are presented. One of them is the direct quenching of overexcitation by products of the light phase of xanthophyll cycles and three others are based on the indirect participation of xanthophyll cycle carotenoids in the process of photoprotection. They include: (1) indirect quenching of overexcitation by aggregation-dependent light-harvesting complexes (LHCII) quenching; (2) light-driven mechanisms in LHCII; and (3) a model based on charge transfer quenching between Chl a and Zx. Moreover, results of the studies on the antioxidant properties of xanthophyll cycle pigments in model systems are also presented.

摘要

已在光合生物中描述了六种不同的叶黄素循环。它们都可以保护光合作用器官免受光诱导氧化应激引起的光损伤。在叶绿体中,过激发条件会导致 NADP 池过度还原和超氧化物的产生,随后超氧化物可以代谢为过氧化氢或羟基自由基等其他活性氧(ROS)。另一方面,光系统的过激发会导致叶绿素激发态的寿命延长,增加叶绿素三重态形成的概率,叶绿素三重态与三重态氧反应形成单线态氧,另一种 ROS。叶黄素循环光依赖性阶段的产物在保护中起着重要作用,不仅可以防止过量的光产生的氧化应激,还可以防止其他 ROS 生成因素(如干旱、寒冷、高温、衰老或盐胁迫)产生的氧化应激。介绍了四种主要假设的机制来解释叶黄素循环在氧化应激中的保护作用。其中之一是叶黄素循环光相产物对过激发的直接猝灭,另外三种则基于叶黄素循环类胡萝卜素在光保护过程中的间接参与。它们包括:(1)通过依赖聚集的光捕获复合物(LHCII)猝灭来间接猝灭过激发;(2)LHCII 中的光驱动机制;和(3)基于 Chl a 和 Zx 之间电荷转移猝灭的模型。此外,还介绍了在模型系统中研究叶黄素循环色素抗氧化特性的结果。

相似文献

引用本文的文献

4
Nitrogen source type modulates heat stress response in coral symbiont ().氮源类型调节珊瑚共生体中的热应激反应。
Appl Environ Microbiol. 2025 Feb 19;91(2):e0059124. doi: 10.1128/aem.00591-24. Epub 2025 Jan 7.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验