Suppr超能文献

高等植物中的环氧叶黄素循环:其与其他叶黄素循环的关系及可能的功能。

The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions.

作者信息

García-Plazaola Jose I, Matsubara Shizue, Osmond C Barry

机构信息

Department of Plant Biology and Ecology, UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.

Institut Phytosphäre (ICG3), Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Funct Plant Biol. 2007 Sep;34(9):759-773. doi: 10.1071/FP07095.

Abstract

Several xanthophyll cycles have been described in photosynthetic organisms. Among them, only two are present in higher plants: the ubiquitous violaxanthin (V) cycle, and the taxonomically restricted lutein epoxide (Lx) cycle, whereas four cycles seem to occur in algae. Although V is synthesised through the β-branch of the carotenoid biosynthetic pathway and Lx is the product of the α-branch; both are co-located in the same sites of the photosynthetic pigment-protein complexes isolated from thylakoids. Both xanthophylls are also de-epoxidised upon light exposure by the same enzyme, violaxanthin de-epoxidase (VDE) leading to the formation of zeaxanthin (Z) and lutein (L) at comparable rates. In contrast with VDE, the reverse reaction presumably catalysed by zeaxanthin epoxidase (ZE), is much slower (or even inactive) with L than with antheraxanthin (A) or Z. Consequently many species lack Lx altogether, and although the presence of Lx shows an irregular taxonomical distribution in unrelated taxa, it has a high fidelity at family level. In those plants which accumulate Lx, variations in ZE activity in vivo mean that a complete Lx-cycle occurs in some (with Lx pools being restored overnight), whereas in others a truncated cycle is observed in which VDE converts Lx into L, but regeneration of Lx by ZE is extremely slow. Accumulation of Lx to high concentrations is found most commonly in old leaves in deeply shaded canopies, and the Lx cycle in these leaves is usually truncated. This seemingly anomalous situation presumably arises because ZE has a low but finite affinity for L, and because deeply shaded leaves are not often exposed to light intensities strong enough to activate VDE. Notably, both in vitro and in vivo studies have recently shown that accumulation of Lx can increase the light harvesting efficiency in the antennae of PSII. We propose a model for the truncated Lx cycle in strong light in which VDE converts Lx to L which then occupies sites L2 and V1 in the light-harvesting antenna complex of PSII (Lhcb), displacing V and Z. There is correlative evidence that this photoconverted L facilitates energy dissipation via non-photochemical quenching and thereby converts a highly efficient light harvesting system to an energy dissipating system with improved capacity to engage photoprotection. Operation of the α- and β-xanthophyll cycles with different L and Z epoxidation kinetics thus allows a combination of rapidly and slowly reversible modulation of light harvesting and photoprotection, with each cycle having distinct effects. Based on the patchy taxonomical distribution of Lx, we propose that the presence of Lx (and the Lx cycle) could be the result of a recurrent mutation in the epoxidase gene that increases its affinity for L, which is conserved whenever it confers an evolutionary advantage.

摘要

在光合生物中已描述了几种叶黄素循环。其中,高等植物中仅存在两种:普遍存在的紫黄质(V)循环和分类学上受限的环氧叶黄素(Lx)循环,而藻类中似乎有四种循环。尽管V是通过类胡萝卜素生物合成途径的β分支合成的,Lx是α分支的产物;但它们都共位于从类囊体分离的光合色素 - 蛋白质复合物的相同位点。两种叶黄素在光照下也由同一种酶——紫黄质脱环氧化酶(VDE)进行脱环氧化,以相当的速率形成玉米黄质(Z)和叶黄素(L)。与VDE相反,推测由玉米黄质环氧化酶(ZE)催化的逆反应,对L的作用比对花药黄质(A)或Z慢得多(甚至无活性)。因此,许多物种完全缺乏Lx,尽管Lx在不相关分类群中的存在显示出不规则的分类分布,但在科水平上具有较高的保真度。在那些积累Lx的植物中,体内ZE活性的变化意味着在一些植物中会发生完整的Lx循环(Lx库在夜间恢复),而在另一些植物中则观察到一个截断的循环,其中VDE将Lx转化为L,但ZE使Lx再生的速度极慢。Lx在高浓度下的积累最常见于深度遮荫树冠中的老叶,这些叶片中的Lx循环通常是截断的。这种看似异常的情况可能是由于ZE对L的亲和力低但有限,以及深度遮荫的叶片不常暴露于足以激活VDE的光强下。值得注意的是,最近的体外和体内研究均表明,Lx的积累可提高PSII天线中的光捕获效率。我们提出了一个强光下截断Lx循环的模型,其中VDE将Lx转化为L,然后L占据PSII(Lhcb)光捕获天线复合物中的L2和V1位点,取代V和Z。有相关证据表明,这种光转化的L通过非光化学猝灭促进能量耗散,从而将高效的光捕获系统转化为具有更强光保护能力的能量耗散系统。α - 和β - 叶黄素循环以不同的L和Z环氧化动力学运行,因此允许光捕获和光保护的快速和缓慢可逆调节相结合,每个循环都有不同的作用。基于Lx零散的分类分布,我们提出Lx(和Lx循环)的存在可能是环氧化酶基因反复突变的结果,该突变增加了其对L的亲和力,只要它赋予进化优势就会被保留。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验