Suppr超能文献

作为形成多个稳定状态的双区信号系统基础的信号转导模体。

Trafficking motifs as the basis for two-compartment signaling systems to form multiple stable states.

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.

出版信息

Biophys J. 2011 Jul 6;101(1):21-32. doi: 10.1016/j.bpj.2011.05.037.

Abstract

Transport of molecules in cells is a central part of cell biology. Frequently such trafficking is not just for material transport, but also for information propagation, and serves to couple signaling circuits across cellular compartments. Here, I show that trafficking transforms simple local signaling pathways into self-organizing systems that span compartments and confer distinct states and identities to these compartments. I find that three motifs encapsulate the responses of most single-compartment signaling pathways in the context of trafficking. These motifs combine with different trafficking reactions to generate a diverse set of cellular functions. For example, trafficked bistable switches can oscillate or become quad- or tristable, depending on trafficking mechanisms and rates. Furthermore, the analysis shows how compartments participating in traffic can settle to distinct molecular compositions characteristic of distinct organelle identities. This general framework shows how the interplay between molecular movement and local reactions can generate many system functions, and give distinct identities to different parts of the cell.

摘要

分子在细胞中的运输是细胞生物学的核心部分。这种运输通常不仅是为了物质运输,也是为了信息传递,并用于在细胞区室之间偶联信号回路。在这里,我表明,运输将简单的局部信号通路转化为自组织系统,跨越区室,并为这些区室赋予不同的状态和身份。我发现,在运输的背景下,三个基元包含了大多数单区室信号通路的响应。这些基元与不同的运输反应相结合,产生了一系列多样化的细胞功能。例如,运输的双稳态开关可以振荡,或者变成四稳态或三稳态,这取决于运输机制和速率。此外,该分析还展示了参与运输的区室如何稳定到具有不同细胞器身份特征的不同分子组成。这个通用框架展示了分子运动和局部反应之间的相互作用如何产生许多系统功能,并为细胞的不同部分赋予不同的身份。

相似文献

1
3
Discovering vesicle traffic network constraints by model checking.
PLoS One. 2017 Jul 6;12(7):e0180692. doi: 10.1371/journal.pone.0180692. eCollection 2017.
4
SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery.
Plant Cell Physiol. 2016 Feb;57(2):307-24. doi: 10.1093/pcp/pcv076. Epub 2015 May 27.
5
Investigating the Role of SNARE Proteins in Trafficking of Postsynaptic Receptors using Conditional Knockouts.
Neuroscience. 2019 Nov 10;420:22-31. doi: 10.1016/j.neuroscience.2018.11.027. Epub 2018 Nov 24.
6
SNARE complex assembly and disassembly.
Curr Biol. 2018 Apr 23;28(8):R397-R401. doi: 10.1016/j.cub.2018.01.005.
8
The ZIP Code of Vesicle Trafficking in Apicomplexa: SEC1/Munc18 and SNARE Proteins.
mBio. 2020 Oct 20;11(5):e02092-20. doi: 10.1128/mBio.02092-20.
10
Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms.
Neuron. 2015 Apr 22;86(2):442-56. doi: 10.1016/j.neuron.2015.03.009. Epub 2015 Apr 2.

引用本文的文献

1
Dendritic trafficking faces physiologically critical speed-precision tradeoffs.
Elife. 2016 Dec 30;5:e20556. doi: 10.7554/eLife.20556.
2
Spatial Control of Biochemical Modification Cascades and Pathways.
Biophys J. 2015 Jun 16;108(12):2912-24. doi: 10.1016/j.bpj.2015.05.012.
3
Parameter-free methods distinguish Wnt pathway models and guide design of experiments.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2652-7. doi: 10.1073/pnas.1416655112. Epub 2015 Feb 17.
4
Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells.
Development. 2014 Jul;141(13):2611-20. doi: 10.1242/dev.107078. Epub 2014 Jun 12.
5
Cellular compartments cause multistability and allow cells to process more information.
Biophys J. 2013 Apr 16;104(8):1824-31. doi: 10.1016/j.bpj.2013.02.028.

本文引用的文献

1
Rab GTPases as coordinators of vesicle traffic.
Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25. doi: 10.1038/nrm2728. Epub 2009 Jul 15.
2
Translational switch for long-term maintenance of synaptic plasticity.
Mol Syst Biol. 2009;5:284. doi: 10.1038/msb.2009.38. Epub 2009 Jun 16.
3
Unlimited multistability in multisite phosphorylation systems.
Nature. 2009 Jul 9;460(7252):274-7. doi: 10.1038/nature08102. Epub 2009 Jun 17.
4
PyMOOSE: Interoperable Scripting in Python for MOOSE.
Front Neuroinform. 2008 Dec 19;2:6. doi: 10.3389/neuro.11.006.2008. eCollection 2008.
5
Memory switches in chemical reaction space.
PLoS Comput Biol. 2008 Jul 18;4(7):e1000122. doi: 10.1371/journal.pcbi.1000122.
6
Membrane identity and GTPase cascades regulated by toggle and cut-out switches.
Mol Syst Biol. 2008;4:206. doi: 10.1038/msb.2008.45. Epub 2008 Jul 15.
7
Robust, tunable biological oscillations from interlinked positive and negative feedback loops.
Science. 2008 Jul 4;321(5885):126-9. doi: 10.1126/science.1156951.
8
Proximity of intracellular regulatory networks to monotone systems.
IET Syst Biol. 2008 May;2(3):103-12. doi: 10.1049/iet-syb:20070036.
10
Simulated de novo assembly of golgi compartments by selective cargo capture during vesicle budding and targeted vesicle fusion.
Biophys J. 2008 Aug;95(4):1674-88. doi: 10.1529/biophysj.107.127498. Epub 2008 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验