Suppr超能文献

基于肌电图和运动数据的自动多模态智能癫痫发作采集(MISA)系统,用于检测运动性癫痫发作。

Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data.

机构信息

Technical University of Denmark, Department of Electrical Engineering, Kgs. Lyngby, Denmark.

出版信息

Comput Methods Programs Biomed. 2012 Aug;107(2):97-110. doi: 10.1016/j.cmpb.2011.06.005. Epub 2011 Jul 2.

Abstract

The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy measures of reconstructed sub-bands from the discrete wavelet transformation (DWT) and the wavelet packet transformation (WPT). Based on the extracted features all data segments were classified using a support vector machine (SVM) algorithm as simulated seizure or normal activity. A case study of the seizure from the patient showed that the simulated seizures were visually similar to the epileptic one. The multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short detection latency and low false detection rate. The results showed superiority of the multi-modal detection system compared to the uni-modal one. The presented system has a promising potential for seizure detection based on multi-modal data.

摘要

目的是开发一种用于检测具有运动表现的癫痫发作的非侵入性自动方法。十位健康受试者模拟癫痫发作,一位患者参与了研究。表面肌电图(sEMG)和运动传感器特征被提取为离散小波变换(DWT)和小波包变换(WPT)重构子带的能量度量。基于提取的特征,所有数据段都使用支持向量机(SVM)算法进行分类,作为模拟发作或正常活动。对患者癫痫发作的案例研究表明,模拟发作在视觉上与癫痫发作相似。多模态智能癫痫采集(MISA)系统具有高灵敏度、短检测潜伏期和低误报率。结果表明,多模态检测系统优于单模态检测系统。所提出的系统具有基于多模态数据进行癫痫检测的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验