Suppr超能文献

支持向量机在慢性癫痫动物模型中的癫痫检测。

Support vector machines for seizure detection in an animal model of chronic epilepsy.

机构信息

Department of Computer and Information Science and Engineering, University of Florida, FL 32611, USA.

出版信息

J Neural Eng. 2010 Jun;7(3):036001. doi: 10.1088/1741-2560/7/3/036001. Epub 2010 Apr 19.

Abstract

We compare the performance of three support vector machine (SVM) types: weighted SVM, one-class SVM and support vector data description (SVDD) for the application of seizure detection in an animal model of chronic epilepsy. Large EEG datasets (273 h and 91 h respectively, with a sampling rate of 1 kHz) from two groups of rats with chronic epilepsy were used in this study. For each of these EEG datasets, we extracted three energy-based seizure detection features: mean energy, mean curve length and wavelet energy. Using these features we performed twofold cross-validation to obtain the performance statistics: sensitivity (S), specificity (K) and detection latency (tau) as a function of control parameters for the given SVM. Optimal control parameters for each SVM type that produced the best seizure detection statistics were then identified using two independent strategies. Performance of each SVM type is ranked based on the overall seizure detection performance through an optimality index metric (O). We found that SVDD not only performed better than the other SVM types in terms of highest value of the mean optimality index metric (O⁻) but also gave a more reliable performance across the two EEG datasets.

摘要

我们比较了三种支持向量机(SVM)类型的性能:加权 SVM、单类 SVM 和支持向量数据描述(SVDD),用于在慢性癫痫动物模型中检测癫痫发作。这项研究使用了两组慢性癫痫大鼠的两个大型 EEG 数据集(分别为 273 小时和 91 小时,采样率为 1 kHz)。对于每个 EEG 数据集,我们提取了三个基于能量的癫痫检测特征:平均能量、平均曲线长度和小波能量。我们使用这些特征进行了两重交叉验证,以获得性能统计数据:灵敏度(S)、特异性(K)和检测潜伏期(tau)作为给定 SVM 的控制参数的函数。然后使用两种独立的策略确定产生最佳癫痫检测统计数据的每个 SVM 类型的最佳控制参数。通过最优指标(O)度量,根据整体癫痫检测性能对每种 SVM 类型的性能进行排名。我们发现,SVDD 不仅在平均最优指标(O⁻)的最高值方面表现优于其他 SVM 类型,而且在两个 EEG 数据集上的性能也更可靠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验