Department of Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
Respir Res. 2011 Jul 5;12(1):90. doi: 10.1186/1465-9921-12-90.
High-tidal-volume mechanical ventilation and hyperoxia used in patients with acute lung injury (ALI) can induce the release of cytokines, including high-mobility group box-1 (HMGB1), oxygen radicals, neutrophil infiltration, and the disruption of epithelial and endothelial barriers. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between high tidal volume and hyperoxia are unclear. We hypothesized that subcutaneous injections of enoxaparin would decrease the effects of hyperoxia on high-tidal-volume ventilation-induced HMGB1 production and neutrophil infiltration via the serine/threonine kinase/protein kinase B (Akt) pathway.
Male C57BL/6, either wild type or Akt+/-, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air or hyperoxia for 2 to 8 hours with or without 4 mg/kg enoxaparin administration. Nonventilated mice served as a control group. Evan blue dye, lung wet-to-dry weight ratio, free radicals, myeloperoxidase, Western blot of Akt, and gene expression of HMGB1 were measured. The expression of HMGB1 was studied by immunohistochemistry.
High-tidal-volume ventilation using hyperoxia induced microvascular permeability, Akt activation, HMGB1 mRNA expression, neutrophil infiltration, oxygen radicals, HMGB1 production, and positive staining of Akt in bronchial epithelium. Hyperoxia-induced augmentation of ventilator-induced lung injury was attenuated with Akt deficient mice and pharmacological inhibition of Akt activity by enoxaparin.
These data suggest that enoxaparin attenuates hyperoxia-augmented high-tidal-volume ventilation-induced neutrophil influx and HMGB1 production through inhibition of the Akt pathway. Understanding the protective mechanism of enoxaparin related with the reduction of HMGB1 may help further knowledge of the effects of mechanical forces in the lung and development of possible therapeutic strategies involved in acute lung injury.
急性肺损伤(ALI)患者机械通气时使用大潮气量和高浓度氧可导致细胞因子(包括高迁移率族蛋白 B1(HMGB1))、氧自由基、中性粒细胞浸润和上皮及内皮屏障破坏的释放。高浓度氧已被证明可增加呼吸机相关性肺损伤,但调节大潮气量和高浓度氧相互作用的机制尚不清楚。我们假设皮下注射依诺肝素可通过丝氨酸/苏氨酸激酶/蛋白激酶 B(Akt)通路减少高浓度氧对大潮气量通气诱导的 HMGB1 产生和中性粒细胞浸润的影响。
雄性 C57BL/6 野生型或 Akt+/-,6 至 8 周龄,体重 20 至 25 克,接受大潮气量(30 ml/kg)机械通气,分别使用空气或高浓度氧通气 2 至 8 小时,同时或不给予 4 mg/kg 依诺肝素。未通气的小鼠作为对照组。测量伊文思蓝染料、肺湿重/干重比、自由基、髓过氧化物酶、Akt 的 Western blot 和 HMGB1 的基因表达。通过免疫组织化学研究 HMGB1 的表达。
高浓度氧大潮气量通气导致肺微血管通透性、Akt 激活、HMGB1 mRNA 表达、中性粒细胞浸润、氧自由基、HMGB1 产生以及支气管上皮的 Akt 阳性染色增加。在 Akt 缺乏型小鼠中和通过依诺肝素抑制 Akt 活性可减弱高浓度氧增强的呼吸机相关性肺损伤。
这些数据表明,依诺肝素通过抑制 Akt 通路减轻高浓度氧增强的大潮气量通气诱导的中性粒细胞浸润和 HMGB1 产生。了解与 HMGB1 减少相关的依诺肝素的保护机制可能有助于进一步了解机械力在肺中的作用和急性肺损伤相关的可能治疗策略的发展。