Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
Anal Chem. 2011 Aug 15;83(16):6154-62. doi: 10.1021/ac200268f. Epub 2011 Jul 20.
We present a novel technique for coupling isotachophoretic preconcentration and electrophoretic separation using bidirectional isotachophoresis (ITP). Bidirectional ITP simultaneously sets up sharp ITP interfaces between relatively high- and low-mobility cations and high- and low-mobility anions. These two interfaces can migrate toward each other and be described as ion concentration shock waves. We here demonstrate a bidirectional ITP process in which we use the interaction of these anionic and cationic ITP shock waves to trigger a transformation from ITP preconcentration to electrophoretic separation. We use anionic ITP to focus anionic sample species prior to shock interaction. The interaction of the counter-propagating anionic and cationic ITP shocks then changes the local pH (and ionic strength) of the focused analyte zones. Under this new condition, the analytes no longer focus and begin to separate electrophoretically. The method provides faster and much less dispersive transition from ITP preconcentration to electrophoretic separation compared with traditional (unidirectional) transient ITP. It eliminates the need for intermediate steps between focusing and separation, such as manual buffer exchanges. We illustrate the technique with numerical simulations of species transport equations. We have validated our simulations with experimental visualization of bidirectional ITP zones. We then show the effectiveness of the technique by coupling ITP preconcentration and high-resolution separation of a 1 kbp DNA ladder via shock interaction in bidirectional ITP.
我们提出了一种使用双向等速电泳(ITP)偶联等速电泳预浓缩和电泳分离的新方法。双向 ITP 同时在相对高迁移率阳离子和低迁移率阳离子以及高迁移率阴离子和低迁移率阴离子之间建立尖锐的 ITP 界面。这两个界面可以相互迁移,并可被描述为离子浓度冲击波。我们在这里演示了一个双向 ITP 过程,其中我们利用这些阴离子和阳离子 ITP 冲击波的相互作用来触发从 ITP 预浓缩到电泳分离的转变。我们使用阴离子 ITP 在冲击波相互作用之前对阴离子样品物质进行聚焦。然后,相反方向传播的阴离子和阳离子 ITP 冲击波的相互作用改变聚焦分析物区域的局部 pH(和离子强度)。在这种新条件下,分析物不再聚焦并开始电泳分离。与传统(单向)瞬变 ITP 相比,该方法提供了从 ITP 预浓缩到电泳分离更快和更分散的转变。它消除了聚焦和分离之间需要中间步骤,例如手动缓冲交换。我们使用物种传输方程的数值模拟来演示该技术。我们通过双向 ITP 中的冲击波相互作用验证了实验可视化的双向 ITP 区的模拟。然后,我们通过在双向 ITP 中通过冲击波相互作用偶联 ITP 预浓缩和 1 kbp DNA 梯的高分辨率分离,展示了该技术的有效性。