Suppr超能文献

采用无电浸蚀法和氟碳涂层控制硅纳米线的超亲水性/超疏水性。

Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings.

机构信息

Department of Mechanical Engineering, Yonsei University, 262, Seongsanno, Seodaemun-gu, Seoul 120-749, Korea.

出版信息

Langmuir. 2011 Aug 16;27(16):10148-56. doi: 10.1021/la200940j. Epub 2011 Jul 20.

Abstract

Surface roughness is promotive of increasing their hydrophilicity or hydrophobicity to the extreme according to the intrinsic wettability determined by the surface free energy characteristics of a base substrate. Top-down etched silicon nanowires are used to create superhydrophilic surfaces based on the hemiwicking phenomenon. Using fluorine carbon coatings, surfaces are converted from superhydrophilic to superhydrophobic to maintain the Cassie-Baxter state stability by reducing the surface free energy to a quarter compared with intrinsic silicon. We present the robust criteria by controlling the height of the nanoscale structures as a design parameter and design guidelines for superhydrophilic and superhydrophobic conditions. The morphology of the silicon nanowires is used to demonstrate their critical height exceeds several hundred nanometers for superhydrophilicity, and surpasses a micrometer for superhydrophobicity. Especially, SiNWs fabricated with a height of more than a micrometer provide an effective means of maintaining superhydrophilic (<10°) long-term stability.

摘要

表面粗糙度根据基底表面自由能特性决定的固有润湿性,促进其亲水或疏水达到极端。采用自上而下刻蚀的硅纳米线,基于半浸润现象,创造出超亲水表面。通过降低表面自由能至四分之一(与固有硅相比),利用氟碳涂层,将表面从超亲水转变为超疏水,以维持 Cassie-Baxter 状态的稳定性。我们提出了通过控制纳米结构高度作为设计参数的稳健标准,并为超亲水和超疏水条件提供了设计指南。硅纳米线的形态用于证明其临界高度超过数百纳米才能达到超亲水性,超过一微米才能达到超疏水性。特别是,高度超过一微米的 SiNWs 提供了维持超亲水(<10°)长期稳定性的有效手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验