IFW Dresden, P. O. Box 270116, 01171 Dresden, Germany.
Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea.
Sci Rep. 2016 Oct 6;6:34348. doi: 10.1038/srep34348.
The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems.
沸腾传热的强化,作为最强大的能量传递技术,将引领高效、下一代能源系统的发展取得里程碑式的进展。通过从粗糙形貌中感知到纳米启发式界面功能,我们证明了界面诱导的液体更新对于避免莱顿弗罗斯特现象从而改善传热至关重要。通过纳米启发式界面的形态和流体动力学特性引发的半抽吸和催化成核的高液体可及性,有助于提高临界热流密度 (CHF) 和传热系数 (HTC)。我们的实验表明,CHF 是涉及界面液体可及性的普遍流体动力特性的函数,而 HTC 则随着较小过热核的更高概率而得到改善。考虑到沸腾时界面诱导和体相液体可及性,我们讨论了功能化界面与反作用流体之间的相互作用,旨在创造一种新的界面,即所谓的智能界面,以期在沸腾及其在能源系统中的实际应用方面取得突破。