Durney C H, Case S O, Pleimling M, Zia R K P
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051108. doi: 10.1103/PhysRevE.83.051108. Epub 2011 May 9.
Population dynamics in systems composed of cyclically competing species has been of increasing interest recently. Here we investigate a system with four or more species. Using mean field theory, we study in detail the trajectories in configuration space of the population fractions. We discover a variety of orbits, shaped like saddles, spirals, and straight lines. Many of their properties are found explicitly. Most remarkably, we identify a collective variable that evolves simply as an exponential: Q ∝ e(λt), where λ is a function of the reaction rates. It provides information on the state of the system for late times (as well as for t→-∞). We discuss implications of these results for the evolution of a finite, stochastic system. A generalization to an arbitrary number of cyclically competing species yields valuable insights into universal properties of such systems.
由周期性竞争物种组成的系统中的种群动态近来受到越来越多的关注。在此,我们研究一个包含四个或更多物种的系统。利用平均场理论,我们详细研究了种群分数在构型空间中的轨迹。我们发现了各种形状的轨道,如鞍形、螺旋形和直线形。明确找到了它们的许多性质。最值得注意的是,我们确定了一个集体变量,它简单地按指数形式演化:Q ∝ e(λt),其中λ是反应速率的函数。它提供了关于系统后期(以及t→-∞时)状态的信息。我们讨论了这些结果对有限随机系统演化的影响。对任意数量的周期性竞争物种进行推广,能让我们深入了解此类系统的普遍性质。