Suppr超能文献

β-Connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy.

作者信息

Marchetti S, Sbrana F, Toscano A, Fratini E, Carlà M, Vassalli M, Tiribilli B, Pacini A, Gambi C M C

机构信息

Department of Physics, University of Florence and CNISM, Sesto Fiorentino (Florence), Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051919. doi: 10.1103/PhysRevE.83.051919. Epub 2011 May 24.

Abstract

The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I(27) to I(34), were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I(27)-I(34) fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验