Huete Ruiz de Lira C, Velikovich A L, Wouchuk J G
Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla La Mancha, Campus s/n, 13071 Ciudad Real, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056320. doi: 10.1103/PhysRevE.83.056320. Epub 2011 May 18.
We present an analytical linear model describing the interaction of a planar shock wave with an isotropic random pattern of density nonuniformities. This kind of interaction is important in inertial confinement fusion where shocks travel into weakly inhomogeneous cryogenic deuterium-wicked foams, and also in astrophysics, where shocks interact with interstellar density clumps. The model presented here is based on the exact theory of space and time evolution of the perturbed quantities generated by a corrugated shock wave traveling into a small-amplitude single-mode density field. Corresponding averages in both two and three dimensions are obtained as closed analytical expressions for the turbulent kinetic energy, acoustic energy flux, density amplification, and vorticity generation downstream. They are given as explicit functions of the two parameters (adiabatic exponent γ and shock strength M(1)) that govern the dynamics of the problem. In addition, these explicit formulas are simplified in the important asymptotic limits of weak and strong shocks and highly compressible fluids.
我们提出了一个分析性线性模型,用于描述平面激波与各向同性随机密度不均匀模式之间的相互作用。这种相互作用在惯性约束聚变中很重要,在惯性约束聚变中,激波传播到弱非均匀低温氘浸渍泡沫中,在天体物理学中也很重要,在天体物理学中,激波与星际密度团相互作用。这里提出的模型基于精确理论,即波动激波传播到小振幅单模密度场中产生的扰动物理量的时空演化理论。二维和三维的相应平均值以封闭解析表达式的形式给出,用于描述下游的湍动能、声能通量、密度放大和涡度生成。它们作为控制问题动力学的两个参数(绝热指数γ和激波强度M(1))的显式函数给出。此外,这些显式公式在弱激波和强激波以及高可压缩流体的重要渐近极限情况下得到了简化。