Suppr超能文献

平面膨胀波的不稳定性。

Instability of a planar expansion wave.

作者信息

Velikovich A L, Zalesak S T, Metzler N, Wouchuk J G

机构信息

Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046306. doi: 10.1103/PhysRevE.72.046306. Epub 2005 Oct 11.

Abstract

An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 << 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

摘要

当入射激波与将流体与真空分隔开的表面相互作用时,会产生膨胀波。这种相互作用启动了馈出过程,该过程将扰动从惯性约束聚变中靶的波纹状内(后)表面传递到外(前)表面。本质上是叠加在中心膨胀波上的驻声波,理想气体中的波纹状膨胀波与波纹状激波一样,通常会使所有流体变量产生衰减振荡。然而,在绝热指数γ的大值和小值情况下,其行为有所不同。当γ>3时,波纹状膨胀波中的质量调制幅度δ(m)随时间α(t)β呈现幂律增长,其中β=(γ - 3)/(γ - 1)。这是唯一一种流体动力学不稳定性的例子,其增长规律取决于状态方程,并以封闭的解析形式表示。结果表明,这种增长是由一种类似于经典里希特迈尔 - 梅什科夫不稳定性的物理机制驱动的。在相反的极端情况γ - 1 << 1时,δ(m)呈现振荡增长,近似与时间呈线性关系,直到达到其峰值约为(γ - 1)(-1/2),然后开始下降。驱动增长的机制与气体中低马赫数爆轰波的维什尼亚克不稳定性相同。针对这两种情况都推导出了增长率的精确解析表达式,并与流体动力学模拟结果进行了良好的比较。

相似文献

1
Instability of a planar expansion wave.平面膨胀波的不稳定性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046306. doi: 10.1103/PhysRevE.72.046306. Epub 2005 Oct 11.
3
Direct observation of feedout-related mass oscillations in plastic targets.
Phys Rev Lett. 2001 Dec 24;87(26):265002. doi: 10.1103/PhysRevLett.87.265002. Epub 2001 Dec 6.
9
Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.单模瑞利-泰勒-梅什科夫不稳定性中再激波与混合的物理学
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026319. doi: 10.1103/PhysRevE.76.026319. Epub 2007 Aug 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验