Suppr超能文献

一项基于真实情况的检测上位性单核苷酸多态性的比较研究。

A Ground Truth Based Comparative Study on Detecting Epistatic SNPs.

作者信息

Chen Li, Yu Guoqiang, Miller David J, Song Lei, Langefeld Carl, Herrington David, Liu Yongmei, Wang Yue

机构信息

Dearptment of Electrical & Computer Engineering, Virginia Polytechnic Institute and State University.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2009 Nov 1;1-4(Nov 2009):26-31. doi: 10.1109/BIBMW.2009.5332132.

Abstract

Genome-wide association studies (GWAS) have been widely applied to identify informative SNPs associated with common and complex diseases. Besides single-SNP analysis, the interaction between SNPs is believed to play an important role in disease risk due to the complex networking of genetic regulations. While many approaches have been proposed for detecting SNP interactions, the relative performance and merits of these methods in practice are largely unclear. In this paper, a ground-truth based comparative study is reported involving 9 popular SNP detection methods using realistic simulation datasets. The results provide general characteristics and guidelines on these methods that may be informative to the biological investigators.

摘要

全基因组关联研究(GWAS)已被广泛应用于识别与常见复杂疾病相关的信息性单核苷酸多态性(SNP)。除了单SNP分析外,由于遗传调控的复杂网络,SNP之间的相互作用被认为在疾病风险中起着重要作用。虽然已经提出了许多方法来检测SNP相互作用,但这些方法在实际中的相对性能和优点在很大程度上尚不清楚。本文报道了一项基于真实模拟数据集的、涉及9种常用SNP检测方法的基于真实情况的比较研究。结果提供了这些方法的一般特征和指导原则,可能对生物学研究者有参考价值。

相似文献

1
A Ground Truth Based Comparative Study on Detecting Epistatic SNPs.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2009 Nov 1;1-4(Nov 2009):26-31. doi: 10.1109/BIBMW.2009.5332132.
2
Comparative analysis of methods for detecting interacting loci.
BMC Genomics. 2011 Jul 5;12:344. doi: 10.1186/1471-2164-12-344.
3
Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
BMC Syst Biol. 2012;6 Suppl 3(Suppl 3):S15. doi: 10.1186/1752-0509-6-S3-S15. Epub 2012 Dec 17.
4
A Markov blanket-based method for detecting causal SNPs in GWAS.
BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S5. doi: 10.1186/1471-2105-11-S3-S5.
5
Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
BMC Bioinformatics. 2014 Apr 10;15:102. doi: 10.1186/1471-2105-15-102.
6
Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):668-678. doi: 10.1109/TCBB.2018.2868667. Epub 2018 Sep 3.
7
A FAST ALGORITHM FOR DETECTING GENE-GENE INTERACTIONS IN GENOME-WIDE ASSOCIATION STUDIES.
Ann Appl Stat. 2014;8(4):2292-2318. doi: 10.1214/14-aoas771.
8
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
BMC Genomics. 2015;16 Suppl 2(Suppl 2):S5. doi: 10.1186/1471-2164-16-S2-S5. Epub 2015 Jan 21.
10
MDSN: A Module Detection Method for Identifying High-Order Epistatic Interactions.
Genes (Basel). 2022 Dec 18;13(12):2403. doi: 10.3390/genes13122403.

引用本文的文献

1
A roadmap to multifactor dimensionality reduction methods.
Brief Bioinform. 2016 Mar;17(2):293-308. doi: 10.1093/bib/bbv038. Epub 2015 Jun 24.
2
High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.
Health Inf Sci Syst. 2015 Feb 24;3(Suppl 1 HISA Big Data in Biomedicine and Healthcare 2013 Con):S3. doi: 10.1186/2047-2501-3-S1-S3. eCollection 2015.
3
Performance analysis of novel methods for detecting epistasis.
BMC Bioinformatics. 2011 Dec 15;12:475. doi: 10.1186/1471-2105-12-475.
4
An overview of population genetic data simulation.
J Comput Biol. 2012 Jan;19(1):42-54. doi: 10.1089/cmb.2010.0188. Epub 2011 Dec 9.
5
Comparative analysis of methods for detecting interacting loci.
BMC Genomics. 2011 Jul 5;12:344. doi: 10.1186/1471-2164-12-344.

本文引用的文献

1
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
2
SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
Bioinformatics. 2009 Feb 15;25(4):504-11. doi: 10.1093/bioinformatics/btn652. Epub 2008 Dec 19.
3
Bayesian inference of epistatic interactions in case-control studies.
Nat Genet. 2007 Sep;39(9):1167-73. doi: 10.1038/ng2110. Epub 2007 Aug 26.
4
Penalized logistic regression for detecting gene interactions.
Biostatistics. 2008 Jan;9(1):30-50. doi: 10.1093/biostatistics/kxm010. Epub 2007 Apr 11.
6
Genome-wide strategies for detecting multiple loci that influence complex diseases.
Nat Genet. 2005 Apr;37(4):413-7. doi: 10.1038/ng1537. Epub 2005 Mar 27.
7
Genome-wide association studies for common diseases and complex traits.
Nat Rev Genet. 2005 Feb;6(2):95-108. doi: 10.1038/nrg1521.
9
The essence of SNPs.
Gene. 1999 Jul 8;234(2):177-86. doi: 10.1016/s0378-1119(99)00219-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验