Suppr超能文献

一种用于单掺杂控制器件中单离子计数和控制的可靠方法。

A reliable method for the counting and control of single ions for single-dopant controlled devices.

作者信息

Shinada T, Kurosawa T, Nakayama H, Zhu Y, Hori M, Ohdomari I

机构信息

Consolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMeW), 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.

出版信息

Nanotechnology. 2008 Aug 27;19(34):345202. doi: 10.1088/0957-4484/19/34/345202. Epub 2008 Jul 15.

Abstract

By 2016, transistor device size will be just 10 nm. However, a transistor that is doped at a typical concentration of 10(18) atoms cm(-3) has only one dopant atom in the active channel region. Therefore, it can be predicted that conventional doping methods such as ion implantation and thermal diffusion will not be available ten years from now. We have been developing a single-ion implantation (SII) method that enables us to implant dopant ions one-by-one into semiconductors until the desired number is reached. Here we report a simple but reliable method to control the number of single-dopant atoms by detecting the change in drain current induced by single-ion implantation. The drain current decreases in a stepwise fashion as a result of the clusters of displaced Si atoms created by every single-ion incidence. This result indicates that the single-ion detection method we have developed is capable of detecting single-ion incidence with 100% efficiency. Our method potentially could pave the way to future single-atom devices, including a solid-state quantum computer.

摘要

到2016年,晶体管器件尺寸将仅为10纳米。然而,以典型浓度10¹⁸ 原子/厘米³ 掺杂的晶体管,在有源沟道区中只有一个掺杂原子。因此,可以预测,诸如离子注入和热扩散等传统掺杂方法在十年后将不再适用。我们一直在开发一种单离子注入(SII)方法,该方法能让我们将掺杂离子逐个注入半导体,直到达到所需数量。在此,我们报告一种简单而可靠的方法,通过检测单离子注入引起的漏极电流变化来控制单掺杂原子的数量。由于每次单离子入射产生的位移硅原子团簇,漏极电流会逐步降低。这一结果表明,我们开发的单离子检测方法能够以100%的效率检测单离子入射。我们的方法可能为未来的单原子器件,包括固态量子计算机,铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验