Suppr超能文献

急性和慢性脊髓损伤中比目鱼肌拉伸反射通路的激活模式改变。

Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury.

机构信息

Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

出版信息

J Neurophysiol. 2011 Oct;106(4):1669-78. doi: 10.1152/jn.00504.2011. Epub 2011 Jul 6.

Abstract

Spinal reflexes are modified by spinal cord injury (SCI) due the loss of excitatory inputs from supraspinal structures and changes within the spinal cord. The stretch reflex is one of the simplest pathways of the central nervous system and was used presently to evaluate how inputs from primary and secondary muscle spindles interact with spinal circuits before and after spinal transection (i.e., spinalization) in 12 adult decerebrate cats. Seven cats were spinalized and allowed to recover for 1 mo (i.e., chronic spinal state), whereas 5 cats were evaluated before (i.e., intact state) and after acute spinalization (i.e., acute spinal state). Stretch reflexes were evoked by stretching the left triceps surae (TS) muscles. The force evoked by TS muscles was recorded along with the activity of several hindlimb muscles. Stretch reflexes were abolished in the acute spinal state due to an inability to activate TS muscles, such as soleus (Sol) and lateral gastrocnemius (LG). In chronic spinal cats, reflex force had partly recovered but Sol and LG activity remained considerably depressed, despite the fact that injecting clonidine could recruit these muscles during locomotor-like activity. In contrast, other muscles not recruited in the intact state, most notably semitendinosus and sartorius, were strongly activated by stretching TS muscles in chronic spinal cats. Therefore, stretch reflex pathways from TS muscles to multiple hindlimb muscles undergo functional reorganization following spinalization, both acute and chronic. Altered activation patterns by stretch reflex pathways could explain some sensorimotor deficits observed during locomotion and postural corrections after SCI.

摘要

脊髓反射会因脊髓损伤 (SCI) 而改变,这是由于来自脊髓以上结构的兴奋性输入的丧失以及脊髓内的变化。牵张反射是中枢神经系统最简单的途径之一,目前用于评估初级和次级肌梭传入在脊髓横断(即脊髓化)前后与脊髓回路的相互作用,在 12 只成年去大脑猫中进行。7 只猫进行了脊髓化,并允许其恢复 1 个月(即慢性脊髓状态),而 5 只猫在脊髓化之前(即完整状态)和之后进行了评估(即急性脊髓化状态)。通过伸展左三头肌(TS)肌肉来诱发牵张反射。记录 TS 肌肉引起的力以及几个后肢肌肉的活动。在急性脊髓化状态下,由于无法激活 TS 肌肉(如比目鱼肌和外侧腓肠肌),牵张反射被消除。在慢性脊髓化猫中,反射力部分恢复,但比目鱼肌和外侧腓肠肌的活动仍然明显降低,尽管注射可乐定可以在类似运动的活动期间募集这些肌肉。相比之下,在完整状态下未募集的其他肌肉,尤其是半腱肌和缝匠肌,在慢性脊髓化猫中强烈地被伸展 TS 肌肉激活。因此,TS 肌肉到多个后肢肌肉的牵张反射途径在急性和慢性脊髓化后经历了功能重组。牵张反射途径的改变激活模式可以解释 SCI 后运动和姿势矫正期间观察到的一些感觉运动缺陷。

相似文献

1
Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury.
J Neurophysiol. 2011 Oct;106(4):1669-78. doi: 10.1152/jn.00504.2011. Epub 2011 Jul 6.
2
Differential modulation of crossed and uncrossed reflex pathways by clonidine in adult cats following complete spinal cord injury.
J Physiol. 2012 Feb 15;590(4):973-89. doi: 10.1113/jphysiol.2011.222208. Epub 2012 Jan 4.
3
Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities.
J Physiol. 1996 Nov 1;496 ( Pt 3)(Pt 3):837-50. doi: 10.1113/jphysiol.1996.sp021731.
4
5
Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes.
Neuroscience. 2009 Feb 18;158(4):1675-90. doi: 10.1016/j.neuroscience.2008.11.005. Epub 2008 Nov 8.
6
8
Reflex wind-up in early chronic spinal injury: plasticity of motor outputs.
J Neurophysiol. 2017 May 1;117(5):2065-2074. doi: 10.1152/jn.00981.2016. Epub 2017 Mar 1.
10
Restoration of extensor excitability in the acute spinal cat by the 5-HT2 agonist DOI.
J Neurophysiol. 1996 Feb;75(2):620-8. doi: 10.1152/jn.1996.75.2.620.

引用本文的文献

4
Left-Right Side-Specific Neuropeptide Mechanism Mediates Contralateral Responses to a Unilateral Brain Injury.
eNeuro. 2021 May 25;8(3). doi: 10.1523/ENEURO.0548-20.2021. Print 2021 May-Jun.
5
Ipsilesional contralesional postural deficits induced by unilateral brain trauma: a side reversal by opioid mechanism.
Brain Commun. 2020 Dec 13;2(2):fcaa208. doi: 10.1093/braincomms/fcaa208. eCollection 2020.
6
Hindlimb motor responses to unilateral brain injury: spinal cord encoding and left-right asymmetry.
Brain Commun. 2020 Apr 30;2(1):fcaa055. doi: 10.1093/braincomms/fcaa055. eCollection 2020.
8
Changes in Activity of Spinal Postural Networks at Different Time Points After Spinalization.
Front Cell Neurosci. 2019 Aug 21;13:387. doi: 10.3389/fncel.2019.00387. eCollection 2019.
9
Medium latency excitatory reflex of soleus re-examined.
Exp Brain Res. 2019 Jul;237(7):1717-1725. doi: 10.1007/s00221-019-05544-9. Epub 2019 Apr 23.
10
Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output.
J Physiol. 2018 Jul;596(14):2643-2659. doi: 10.1113/JP276153. Epub 2018 Jun 9.

本文引用的文献

1
Recovery of locomotion after spinal cord injury: some facts and mechanisms.
Annu Rev Neurosci. 2011;34:413-40. doi: 10.1146/annurev-neuro-061010-113746.
3
Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord.
Ann N Y Acad Sci. 2010 Jun;1198:35-41. doi: 10.1111/j.1749-6632.2010.05430.x.
4
Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.
J Neurosci. 2010 May 19;30(20):7061-71. doi: 10.1523/JNEUROSCI.0450-10.2010.
6
Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits.
J Neurophysiol. 2010 Feb;103(2):1080-92. doi: 10.1152/jn.00575.2009. Epub 2009 Dec 16.
8
Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
Brain. 2009 Aug;132(Pt 8):2196-205. doi: 10.1093/brain/awp124. Epub 2009 May 21.
9
Identified ankle extensor and flexor motoneurons display different firing profiles in the neonatal rat.
J Neurosci. 2009 Mar 4;29(9):2748-53. doi: 10.1523/JNEUROSCI.3462-08.2009.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验