Suppr超能文献

通过蛋白质定量和肽质量控制(PQPQ)增强 shotgun 蛋白质组学数据的信息输出。

Enhanced information output from shotgun proteomics data by protein quantification and peptide quality control (PQPQ).

机构信息

The Science for Life Laboratory Stockholm and Department of Oncology-Pathology, Mass spectrometry and Proteomics, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden.

出版信息

Mol Cell Proteomics. 2011 Oct;10(10):M111.010264. doi: 10.1074/mcp.M111.010264. Epub 2011 Jul 6.

Abstract

We present a tool to improve quantitative accuracy and precision in mass spectrometry based on shotgun proteomics: protein quantification by peptide quality control, PQPQ. The method is based on the assumption that the quantitative pattern of peptides derived from one protein will correlate over several samples. Dissonant patterns arise either from outlier peptides or because of the presence of different protein species. By correlation analysis, protein quantification by peptide quality control identifies and excludes outliers and detects the existence of different protein species. Alternative protein species are then quantified separately. By validating the algorithm on seven data sets related to different cancer studies we show that data processing by protein quantification by peptide quality control improves the information output from shotgun proteomics. Data from two labeling procedures and three different instrumental platforms was included in the evaluation. With this unique method using both peptide sequence data and quantitative data we can improve the quantitative accuracy and precision on the protein level and detect different protein species.

摘要

我们提出了一种基于鸟枪法蛋白质组学提高质谱定量准确性和精密度的工具

肽质量控制的蛋白质定量(PQPQ)。该方法基于这样的假设,即来自一种蛋白质的肽的定量模式将在多个样本中相关。不一致的模式要么来自异常肽,要么是因为存在不同的蛋白质种类。通过相关分析,肽质量控制的蛋白质定量识别和排除异常值,并检测不同蛋白质种类的存在。然后分别对不同的蛋白质种类进行定量。通过对七个与不同癌症研究相关的数据集进行算法验证,我们表明,通过肽质量控制的蛋白质定量对数据进行处理可以提高鸟枪法蛋白质组学的信息输出。评估中包含了两种标记程序和三种不同的仪器平台的数据。通过使用肽序列数据和定量数据的这种独特方法,我们可以提高蛋白质水平的定量准确性和精密度,并检测不同的蛋白质种类。

相似文献

3
Targeted Feature Detection for Data-Dependent Shotgun Proteomics.针对数据依赖型鸟枪法蛋白质组学的靶向特征检测。
J Proteome Res. 2017 Aug 4;16(8):2964-2974. doi: 10.1021/acs.jproteome.7b00248. Epub 2017 Jul 19.

引用本文的文献

2
A statistical testing procedure for validating class labels.一种用于验证类别标签的统计测试程序。
J Appl Stat. 2022 Feb 24;50(8):1725-1749. doi: 10.1080/02664763.2022.2038546. eCollection 2023.
7
Quantitative Proteomics Using Isobaric Labeling: A Practical Guide.定量蛋白质组学使用等重标记:实用指南。
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):689-706. doi: 10.1016/j.gpb.2021.08.012. Epub 2022 Jan 8.
9

本文引用的文献

2
The pros and cons of peptide-centric proteomics.以肽为中心的蛋白质组学的利弊。
Nat Biotechnol. 2010 Jul;28(7):659-64. doi: 10.1038/nbt0710-659.
3
Addressing accuracy and precision issues in iTRAQ quantitation.解决 iTRAQ 定量分析中的准确性和精密度问题。
Mol Cell Proteomics. 2010 Sep;9(9):1885-97. doi: 10.1074/mcp.M900628-MCP200. Epub 2010 Apr 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验