The Science for Life Laboratory Stockholm and Department of Oncology-Pathology, Mass spectrometry and Proteomics, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden.
Mol Cell Proteomics. 2011 Oct;10(10):M111.010264. doi: 10.1074/mcp.M111.010264. Epub 2011 Jul 6.
We present a tool to improve quantitative accuracy and precision in mass spectrometry based on shotgun proteomics: protein quantification by peptide quality control, PQPQ. The method is based on the assumption that the quantitative pattern of peptides derived from one protein will correlate over several samples. Dissonant patterns arise either from outlier peptides or because of the presence of different protein species. By correlation analysis, protein quantification by peptide quality control identifies and excludes outliers and detects the existence of different protein species. Alternative protein species are then quantified separately. By validating the algorithm on seven data sets related to different cancer studies we show that data processing by protein quantification by peptide quality control improves the information output from shotgun proteomics. Data from two labeling procedures and three different instrumental platforms was included in the evaluation. With this unique method using both peptide sequence data and quantitative data we can improve the quantitative accuracy and precision on the protein level and detect different protein species.
肽质量控制的蛋白质定量(PQPQ)。该方法基于这样的假设,即来自一种蛋白质的肽的定量模式将在多个样本中相关。不一致的模式要么来自异常肽,要么是因为存在不同的蛋白质种类。通过相关分析,肽质量控制的蛋白质定量识别和排除异常值,并检测不同蛋白质种类的存在。然后分别对不同的蛋白质种类进行定量。通过对七个与不同癌症研究相关的数据集进行算法验证,我们表明,通过肽质量控制的蛋白质定量对数据进行处理可以提高鸟枪法蛋白质组学的信息输出。评估中包含了两种标记程序和三种不同的仪器平台的数据。通过使用肽序列数据和定量数据的这种独特方法,我们可以提高蛋白质水平的定量准确性和精密度,并检测不同的蛋白质种类。