Suppr超能文献

Sarcolemmal Na(+)-K(+)-ATPase: inactivation by neutrophil-derived free radicals and oxidants.

作者信息

Kukreja R C, Weaver A B, Hess M L

机构信息

Department of Medicine, Medical College of Virginia, Richmond 23298.

出版信息

Am J Physiol. 1990 Nov;259(5 Pt 2):H1330-6. doi: 10.1152/ajpheart.1990.259.5.H1330.

Abstract

One of the targets of free radicals and neutrophil-derived oxidants that is known to be generated during ischemic-reperfusion injury of the myocardium is the sarcolemma. We therefore examined the susceptibility of sarcolemmal Na(+)-K(+)-ATPase and ouabain binding sites to O2-., H2O2,.OH, HOCl, NH2Cl, and stimulated neutrophils. O2-. generated from xanthine oxidase action on xanthine had no significant effect on Na(+)-K(+)-ATPase activity. The inhibition of Na(+)-K(+)-ATPase activity and ouabain binding by H2O2 was dependent on concentration and the time of incubation. H2O2 (10 mM) inhibited 80% of Na(+)-K(+)-ATPase activity at 90 min..OH generated by Fenton's reagent (200 microM Fe2+ + 5 mM H2O2) significantly decreased maximum binding of ouabain (43.06 +/- 1.45 to 31.96 +/- 2.37 pmol/mg) and was significantly protected by 5 mM mannitol (P less than 0.05). The dissociation constant of ouabain binding was unaffected by Fenton's reagent or H2O2. In contrast, lower concentrations of HOCl, NH2Cl, or PMA-stimulated human neutrophils (4 X 10(6) cells/ml) had significant inhibitory effects on Na(+)-K(+)-ATPase activity. We conclude that O-2. per se is not damaging to sarcolemmal Na(+)-K(+)-ATPase activity. The formation of H2O2 and the more destructive .OH or HOCl and NH2Cl disrupt sarcolemmal function by inhibiting Na(+)-K(+)-ATPase activity and destroying ouabain binding sites.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验