Department of Physics, Graduate School of Science, Kyoto University Kyoto, Japan.
Front Comput Neurosci. 2011 Jun 21;5:29. doi: 10.3389/fncom.2011.00029. eCollection 2011.
The proper timing of actions is necessary for the survival of animals, whether in hunting prey or escaping predators. Researchers in the field of neuroscience have begun to explore neuronal signals correlated to behavioral interval timing. Here, we attempt to decode the lapse of time from neuronal population signals recorded from the frontal cortex of monkeys performing a multiple-interval timing task. We designed a Bayesian algorithm that deciphers temporal information hidden in noisy signals dispersed within the activity of individual neurons recorded from monkeys trained to determine the passage of time before initiating an action. With this decoder, we succeeded in estimating the elapsed time with a precision of approximately 1 s throughout the relevant behavioral period from firing rates of 25 neurons in the pre-supplementary motor area. Further, an extended algorithm makes it possible to determine the total length of the time-interval required to wait in each trial. This enables observers to predict the moment at which the subject will take action from the neuronal activity in the brain. A separate population analysis reveals that the neuronal ensemble represents the lapse of time in a manner scaled relative to the scheduled interval, rather than representing it as the real physical time.
动物的生存需要正确的行动时机,无论是捕食猎物还是逃避捕食者。神经科学领域的研究人员已经开始探索与行为间隔时间相关的神经元信号。在这里,我们试图从执行多次间隔时间任务的猴子的前额叶皮层记录的神经元群体信号中解码时间流逝。我们设计了一种贝叶斯算法,可以从记录的单个神经元的活动中分散的嘈杂信号中破译隐藏的时间信息,这些神经元是经过训练以确定在采取行动之前时间流逝的猴子。使用此解码器,我们成功地以大约 1 秒的精度估计了在与预补充运动区的 25 个神经元的发射率相关的行为期间内的经过时间。此外,扩展算法使得能够确定在每次试验中等待所需的时间间隔的总长度。这使观察者能够根据大脑中的神经元活动来预测受试者采取行动的时刻。单独的群体分析表明,神经元整体以与预定间隔相对应的方式表示时间流逝,而不是将其表示为真实的物理时间。