Suppr超能文献

工作记忆的尖峰时间理论。

Spike-timing theory of working memory.

机构信息

The Neurosciences Institute, San Diego, California, United States of America.

出版信息

PLoS Comput Biol. 2010 Aug 19;6(8):e1000879. doi: 10.1371/journal.pcbi.1000879.

Abstract

Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds.

摘要

工作记忆(WM)是大脑记忆系统的一部分,它提供了认知所需的信息的临时存储和操作。尽管在任何给定的时间内,WM 的容量都是有限的,但它具有巨大的记忆内容,因为它作用于大脑几乎无限的长期记忆储备。通过模拟,我们表明,如果我们考虑神经元处理的尖峰时间性质,那么大的记忆内容和 WM 功能会自发出现。在这里,记忆由广泛重叠的神经元组表示,这些神经元组表现出典型的时间锁定时空尖峰时间模式,称为多同步模式;形成这种多同步神经元组(PNG)的突触会经历长时程和短时程依赖的突触可塑性,其形式为长时程和短期尖峰时间依赖可塑性。虽然长时程增强是 PNG 形成所必需的,但我们展示了短期可塑性如何暂时增强选定 PNG 的突触,并导致这些 PNG 的自发再激活率增加。这种增加的再激活率与 WM 任务期间的体内记录一致,导致所选 PNG 中的神经元之间的尖峰间隔变异性增加,并且不规则但系统地改变了升高的发射率分布。此外,我们的理论解释了这种缓慢变化的发射率和精确计时的尖峰之间的关系,并且揭示了 WM 与秒级的时间感知之间的新关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b74/2924241/b70c2f323a83/pcbi.1000879.g001.jpg

相似文献

1
Spike-timing theory of working memory.
PLoS Comput Biol. 2010 Aug 19;6(8):e1000879. doi: 10.1371/journal.pcbi.1000879.
2
Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
J Neurosci. 2016 Nov 2;36(44):11238-11258. doi: 10.1523/JNEUROSCI.0104-16.2016.
3
Synaptic scaling enables dynamically distinct short- and long-term memory formation.
PLoS Comput Biol. 2013 Oct;9(10):e1003307. doi: 10.1371/journal.pcbi.1003307. Epub 2013 Oct 31.
4
Short-term plasticity explains irregular persistent activity in working memory tasks.
J Neurosci. 2013 Jan 2;33(1):133-49. doi: 10.1523/JNEUROSCI.3455-12.2013.
5
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
J Neurosci. 2017 Jan 4;37(1):83-96. doi: 10.1523/JNEUROSCI.1989-16.2016.
6
Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
PLoS Comput Biol. 2016 Mar 3;12(3):e1004750. doi: 10.1371/journal.pcbi.1004750. eCollection 2016 Mar.
7
Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
Eur J Neurosci. 2005 Jun;21(11):3143-60. doi: 10.1111/j.1460-9568.2005.04087.x.
8
Neuronal spike-rate adaptation supports working memory in language processing.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20881-20889. doi: 10.1073/pnas.2000222117. Epub 2020 Aug 11.
9
Spike-timing dynamics of neuronal groups.
Cereb Cortex. 2004 Aug;14(8):933-44. doi: 10.1093/cercor/bhh053. Epub 2004 May 13.
10
Synaptic plasticity: taming the beast.
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. doi: 10.1038/81453.

引用本文的文献

1
Spiking Neural Network Models of Interaural Time Difference Extraction via a Massively Collaborative Process.
eNeuro. 2025 Jul 24;12(7). doi: 10.1523/ENEURO.0383-24.2025. Print 2025 Jul.
2
On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper.
Cogn Neurodyn. 2024 Dec;18(6):3383-3400. doi: 10.1007/s11571-023-10061-1. Epub 2024 Feb 4.
3
Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism.
Front Neuroinform. 2024 Apr 19;18:1323203. doi: 10.3389/fninf.2024.1323203. eCollection 2024.
4
Brain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI.
Bioengineering (Basel). 2023 Nov 21;10(12):1341. doi: 10.3390/bioengineering10121341.
5
Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition.
Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(8):254-305. doi: 10.2183/pjab.99.018.
6
Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures.
Front Comput Neurosci. 2022 Jun 15;16:898829. doi: 10.3389/fncom.2022.898829. eCollection 2022.
7
An STDP-based encoding method for associative and composite data.
Sci Rep. 2022 Mar 18;12(1):4666. doi: 10.1038/s41598-022-08469-6.
8
Reevaluating the Role of Persistent Neural Activity in Short-Term Memory.
Trends Cogn Sci. 2020 Mar;24(3):242-258. doi: 10.1016/j.tics.2019.12.014. Epub 2020 Jan 29.
9
Turing complete neural computation based on synaptic plasticity.
PLoS One. 2019 Oct 16;14(10):e0223451. doi: 10.1371/journal.pone.0223451. eCollection 2019.
10
Robust computation with rhythmic spike patterns.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18050-18059. doi: 10.1073/pnas.1902653116. Epub 2019 Aug 20.

本文引用的文献

2
Awake replay of remote experiences in the hippocampus.
Nat Neurosci. 2009 Jul;12(7):913-8. doi: 10.1038/nn.2344. Epub 2009 Jun 14.
3
Spontaneous events outline the realm of possible sensory responses in neocortical populations.
Neuron. 2009 May 14;62(3):413-25. doi: 10.1016/j.neuron.2009.03.014.
4
Memory without feedback in a neural network.
Neuron. 2009 Feb 26;61(4):621-34. doi: 10.1016/j.neuron.2008.12.012.
5
Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex?
Front Neurosci. 2008 Jul 14;2(1):114-22. doi: 10.3389/neuro.01.003.2008. eCollection 2008 Jul.
6
Internally generated cell assembly sequences in the rat hippocampus.
Science. 2008 Sep 5;321(5894):1322-7. doi: 10.1126/science.1159775.
7
Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex.
Nat Neurosci. 2008 Jul;11(7):823-33. doi: 10.1038/nn.2134. Epub 2008 May 30.
8
Short-term memory trace in rapidly adapting synapses of inferior temporal cortex.
PLoS Comput Biol. 2008 May 16;4(5):e1000073. doi: 10.1371/journal.pcbi.1000073.
9
Synaptic theory of working memory.
Science. 2008 Mar 14;319(5869):1543-6. doi: 10.1126/science.1150769.
10
Rapid neural coding in the retina with relative spike latencies.
Science. 2008 Feb 22;319(5866):1108-11. doi: 10.1126/science.1149639.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验