Gavornik Jeffrey P, Shouval Harel Z
Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
J Comput Neurosci. 2011 Apr;30(2):501-13. doi: 10.1007/s10827-010-0275-y. Epub 2010 Sep 10.
Despite the vital importance of our ability to accurately process and encode temporal information, the underlying neural mechanisms are largely unknown. We have previously described a theoretical framework that explains how temporal representations, similar to those reported in the visual cortex, can form in locally recurrent cortical networks as a function of reward modulated synaptic plasticity. This framework allows networks of both linear and spiking neurons to learn the temporal interval between a stimulus and paired reward signal presented during training. Here we use a mean field approach to analyze the dynamics of non-linear stochastic spiking neurons in a network trained to encode specific time intervals. This analysis explains how recurrent excitatory feedback allows a network structure to encode temporal representations.
尽管我们准确处理和编码时间信息的能力至关重要,但其潜在的神经机制在很大程度上仍不为人知。我们之前描述了一个理论框架,该框架解释了类似于视觉皮层中所报道的时间表征如何在局部循环皮质网络中作为奖励调制突触可塑性的函数而形成。这个框架允许线性神经元网络和脉冲神经元网络学习训练期间呈现的刺激与配对奖励信号之间的时间间隔。在这里,我们使用平均场方法来分析在经过训练以编码特定时间间隔的网络中非线性随机脉冲神经元的动力学。该分析解释了循环兴奋性反馈如何使网络结构编码时间表征。